HEAL DSpace

Identification of planar screens at low frequencies in thermoelasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gintides, D en
dc.contributor.author Kiriaki, K en
dc.date.accessioned 2014-03-01T01:28:39Z
dc.date.available 2014-03-01T01:28:39Z
dc.date.issued 2008 en
dc.identifier.issn 1521-1398 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18896
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-40849100638&partnerID=40&md5=9692bb4df349559edf7976be5b8aee65 en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.other BOUNDARY MEASUREMENTS en
dc.subject.other SCATTERING en
dc.subject.other CRACKS en
dc.subject.other EXPANSIONS en
dc.subject.other BODY en
dc.title Identification of planar screens at low frequencies in thermoelasticity en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper the problem of determining a screen in an isotropic and homogeneous thermoelastic medium at low frequencies is considered. We formulate the direct problem for the planar screen in the thermoelastic medium and present an equivalent model for the problem under consideration at low-frequencies based on an non - homogeneous formulation via appropriate Dirac measures. We prove that the corresponding inverse problem of reconstructing the planar screen for two important cases: the thermal stress dislocation and the thermal displacement dislocation from boundary measurements has a unique solution. Finally, we present a reconstruction method for the above cases based on a proper use of certain vector test functions and the application of the two-sided Laplace transform. en
heal.publisher EUDOXUS PRESS, LLC en
heal.journalName Journal of Computational Analysis and Applications en
dc.identifier.isi ISI:000253260900008 en
dc.identifier.volume 10 en
dc.identifier.issue 1 en
dc.identifier.spage 83 en
dc.identifier.epage 100 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής