HEAL DSpace

Improving network anomaly detection via selective flow-based sampling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Androulidakis, G en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T01:28:40Z
dc.date.available 2014-03-01T01:28:40Z
dc.date.issued 2008 en
dc.identifier.issn 1751-8628 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18906
dc.subject Network Anomaly Detection en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Internet en
dc.subject.other Numerical methods en
dc.subject.other Parameter estimation en
dc.subject.other Scalability en
dc.subject.other Telecommunication traffic en
dc.subject.other Anomaly detection effectiveness en
dc.subject.other Flow-based sampling en
dc.subject.other Malicious traffic en
dc.subject.other Security of data en
dc.title Improving network anomaly detection via selective flow-based sampling en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-com:20070231 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-com:20070231 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Sampling has become an essential component of scalable Internet traffic monitoring and anomaly detection. A new flow-based sampling technique that focuses on the selection of small flows, which are usually the source of malicious traffic, is introduced and analysed. The proposed approach provides a flexible framework for preferential flow sampling that can effectively balance the tradeoff between the volume of the processed information and the anomaly detection accuracy. The performance evaluation of the impact of selective flow-based sampling on the anomaly detection process is achieved through the adoption and application of a sequential non-parametric change-point anomaly detection method on realistic data that have been collected from a real operational university campus network. The corresponding numerical results demonstrate that the proposed approach achieves to improve anomaly detection effectiveness and at the same time reduces the number of selected flows. © The Institution of Engineering and Technology 2008. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Communications en
dc.identifier.doi 10.1049/iet-com:20070231 en
dc.identifier.isi ISI:000255465500001 en
dc.identifier.volume 2 en
dc.identifier.issue 3 en
dc.identifier.spage 399 en
dc.identifier.epage 409 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής