HEAL DSpace

Inmost singularities of S.I.Es influencing their numerical solution in the BEM

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsamasphyros, G en
dc.contributor.author Theotokoglou, EE en
dc.date.accessioned 2014-03-01T01:28:41Z
dc.date.available 2014-03-01T01:28:41Z
dc.date.issued 2008 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18916
dc.subject Boundary element method en
dc.subject Elasticity en
dc.subject Inmost singularities en
dc.subject Nearby poles en
dc.subject Numerical integration en
dc.subject Quadrature formula en
dc.subject Singular integral equation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary element method en
dc.subject.other Numerical methods en
dc.subject.other Problem solving en
dc.subject.other Cauchy singularity en
dc.subject.other Inmost singularities en
dc.subject.other Nearby poles en
dc.subject.other Point singularities en
dc.subject.other Quadrature formula en
dc.subject.other Unknown function en
dc.subject.other Integral equations en
dc.title Inmost singularities of S.I.Es influencing their numerical solution in the BEM en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enganabound.2007.08.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enganabound.2007.08.008 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract When solving numerically the singular integral equations (S.I.Es) using the boundary element method (BEM) or other similar methods, special attention is given to the Cauchy singularity of the singular integrals and to the end point singularities of the unknown function. But in many cases there exist other, inmost, singularities either in the unknown function or in the regular kernel. In fact the unknown function can have essential singularities (poles of order one or two), weak singularities and nearby singularities at isolated points. Usually these singularities are provoked from singularities of the right hand side (r.h.s.) function, whereas the regular kernel can have essential and weak singularities at isolated points and nearby singularities. Neglecting these singularities in the numerical process, we obtain solutions largely diverging from the exact ones. So far these problems are not confronted in the BEM numerical process. In this paper, we classify all these singularities and we give two numerical examples illustrating the important influence of nearby singularities of the regular kernel. Some suggestions concerning appropriate numerical methods for these problems are also given. (c) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Analysis with Boundary Elements en
dc.identifier.doi 10.1016/j.enganabound.2007.08.008 en
dc.identifier.isi ISI:000253752800001 en
dc.identifier.volume 32 en
dc.identifier.issue 3 en
dc.identifier.spage 187 en
dc.identifier.epage 195 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής