dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Garavelas, ATh |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:28:41Z |
|
dc.date.available |
2014-03-01T01:28:41Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18917 |
|
dc.subject |
Earthquake resistant structures |
en |
dc.subject |
Monte Carlo |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Performance-Based Design |
en |
dc.subject |
Reliability-based optimization |
en |
dc.subject |
Response surface |
en |
dc.subject |
Sizing-topology design variables |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Budget control |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Network protocols |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Quality assurance |
en |
dc.subject.other |
Random variables |
en |
dc.subject.other |
Reliability analysis |
en |
dc.subject.other |
Risk assessment |
en |
dc.subject.other |
Seismic design |
en |
dc.subject.other |
Seismology |
en |
dc.subject.other |
Sensor networks |
en |
dc.subject.other |
Shape optimization |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Vegetation |
en |
dc.subject.other |
Wireless sensor networks |
en |
dc.subject.other |
Earthquake resistant structures |
en |
dc.subject.other |
Monte Carlo |
en |
dc.subject.other |
Performance-Based Design |
en |
dc.subject.other |
Response surface |
en |
dc.subject.other |
Sizing-topology design variables |
en |
dc.subject.other |
Reliability |
en |
dc.title |
Innovative seismic design optimization with reliability constraints |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cma.2007.12.025 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cma.2007.12.025 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Performance-Based Design (PBD) methodologies is the contemporary trend in designing better and more economic earthquake-resistant structures where the main objective is to achieve more predictable and reliable levels of safety and operability against natural hazards. On the other hand, reliability-based optimization (RBO) methods directly account for the variability of the design parameters into the formulation of the optimization problem. The objective of this work is to incorporate PBD methodologies under seismic loading into the framework of RBO in conjunction with innovative tools for treating computational intensive problems of real-world structural systems. Two types of random variables are considered: Those which influence the level of seismic demand and those that affect the structural capacity. Reliability analysis is required for the assessment of the probabilistic constraints within the RBO formulation. The Monte Carlo Simulation (MCS) method is considered as the most reliable method for estimating the probabilities of exceedance or other statistical quantities albeit with excessive, in many cases, computational cost. First or Second Order Reliability Methods (FORM, SORM) constitute alternative approaches which require an explicit limit-state function. This type of limit-state function is not available for complex problems. In this study, in order to find the most efficient methodology for performing reliability analysis in conjunction with performance-based optimum design under seismic loading, a Neural Network approximation of the limit-state function is proposed and is combined with either MCS or with FORM approaches for handling the uncertainties. These two methodologies are applied in RBO problems with sizing and topology design variables resulting in two orders of magnitude reduction of the computational effort. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/j.cma.2007.12.025 |
en |
dc.identifier.isi |
ISI:000261249700004 |
en |
dc.identifier.volume |
198 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
28 |
en |
dc.identifier.epage |
41 |
en |