dc.contributor.author |
Hizanidis, K |
en |
dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Efremidis, NK |
en |
dc.date.accessioned |
2014-03-01T01:28:42Z |
|
dc.date.available |
2014-03-01T01:28:42Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1094-4087 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18925 |
|
dc.subject |
Band Gap |
en |
dc.subject |
Modulation Instability |
en |
dc.subject |
Nonlinear Optics |
en |
dc.subject |
superlattices |
en |
dc.subject |
Continuous Wave |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Integrated optoelectronics |
en |
dc.subject.other |
Linear equations |
en |
dc.subject.other |
Waveguides |
en |
dc.subject.other |
Continuous models |
en |
dc.subject.other |
Continuous waves |
en |
dc.subject.other |
Defocusing |
en |
dc.subject.other |
Detuning |
en |
dc.subject.other |
Discrete equations |
en |
dc.subject.other |
Discretization schemes |
en |
dc.subject.other |
Modulational instabilities |
en |
dc.subject.other |
Non linearities |
en |
dc.subject.other |
Nonlinear constituents |
en |
dc.subject.other |
Nonlinear lattices |
en |
dc.subject.other |
Nonlinear optical waveguides |
en |
dc.subject.other |
Nonlinear properties |
en |
dc.subject.other |
Periodic modes |
en |
dc.subject.other |
Propagation dynamics |
en |
dc.subject.other |
Waveguide arrays |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Interlaced linear-nonlinear optical waveguide arrays |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1364/OE.16.018296 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1364/OE.16.018296 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The system of coupled discrete equations describing a two-component superlattice with interlaced linear and nonlinear constituents is studied as a basis for investigating binary waveguide arrays, such as ribbed AlGaAs structures, among others. Compared to the single nonlinear lattice, the interlaced system exhibits an extra band-gap controlled by the, suitably chosen by design, relative detuning. In more general physics settings, this system represents a discretization scheme for the single-equation-based continuous models in media with transversely modulated linear and nonlinear properties. Continuous wave solutions and the associated modulational instability are fully analytically investigated and numerically tested for focusing and defocusing nonlinearity. The propagation dynamics and the stability of periodic modes are also analytically investigated for the case of zero Bloch momentum. In the band-gaps a variety of stable discrete solitary modes, dipole or otherwise, in-phase or of staggered type are found and discussed. (C) 2008 Optical Society of America |
en |
heal.publisher |
OPTICAL SOC AMER |
en |
heal.journalName |
Optics Express |
en |
dc.identifier.doi |
10.1364/OE.16.018296 |
en |
dc.identifier.isi |
ISI:000260865900112 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
22 |
en |
dc.identifier.spage |
18296 |
en |
dc.identifier.epage |
18311 |
en |