dc.contributor.author |
Anagnostopoulos, C-NE |
en |
dc.contributor.author |
Anagnostopoulos, IE |
en |
dc.contributor.author |
Psoroulas, ID |
en |
dc.contributor.author |
Loumos, V |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T01:28:43Z |
|
dc.date.available |
2014-03-01T01:28:43Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1524-9050 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18939 |
|
dc.subject |
Image processing |
en |
dc.subject |
License plate identification |
en |
dc.subject |
License plate recognition (LPR) |
en |
dc.subject |
License plate segmentation |
en |
dc.subject |
Optical character recognition (OCR) |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Image acquisition |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
License plates (automobile) |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Photography |
en |
dc.subject.other |
Video recording |
en |
dc.subject.other |
Algorithmic assessment |
en |
dc.subject.other |
Computational power |
en |
dc.subject.other |
Illumination conditions |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
License plate identification |
en |
dc.subject.other |
License plate recognition |
en |
dc.subject.other |
License plate recognition (LPR) |
en |
dc.subject.other |
License plate segmentation |
en |
dc.subject.other |
License plates |
en |
dc.subject.other |
Non uniform |
en |
dc.subject.other |
Optical character recognition (OCR) |
en |
dc.subject.other |
Processing Time |
en |
dc.subject.other |
Public image |
en |
dc.subject.other |
Recognition rates |
en |
dc.subject.other |
Reference point |
en |
dc.subject.other |
Still images |
en |
dc.subject.other |
Vehicle speeds |
en |
dc.subject.other |
Video sequencing |
en |
dc.subject.other |
Optical character recognition |
en |
dc.title |
License plate recognition from still images and video sequences: A survey |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITS.2008.922938 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITS.2008.922938 |
en |
heal.identifier.secondary |
4518951 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity of plate formats and the nonuniform outdoor illumination conditions during image acquisition. Therefore, most approaches work only under restricted conditions such as fixed illumination, limited vehicle speed, designated routes, and stationary backgrounds. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this paper is to categorize and assess them. Issues such as processing time, computational power, and recognition rate are also addressed, when available. Finally, this paper offers to researchers a link to a public image database to define a common reference point for LPR algorithmic assessment. © 2008 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Intelligent Transportation Systems |
en |
dc.identifier.doi |
10.1109/TITS.2008.922938 |
en |
dc.identifier.isi |
ISI:000258913500001 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
377 |
en |
dc.identifier.epage |
391 |
en |