HEAL DSpace

Mapping optimization based on sampling size in earth related and environmental phenomena

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Modis, K en
dc.contributor.author Papantonopoulos, G en
dc.contributor.author Komnitsas, K en
dc.contributor.author Papaodysseus, K en
dc.date.accessioned 2014-03-01T01:28:44Z
dc.date.available 2014-03-01T01:28:44Z
dc.date.issued 2008 en
dc.identifier.issn 1436-3240 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18949
dc.subject Environment en
dc.subject Geostatistics en
dc.subject Interpolation en
dc.subject Mapping en
dc.subject Sampling size en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Engineering, Civil en
dc.subject.classification Environmental Sciences en
dc.subject.classification Statistics & Probability en
dc.subject.classification Water Resources en
dc.subject.other contaminated land en
dc.subject.other environmental planning en
dc.subject.other estimation method en
dc.subject.other geostatistics en
dc.subject.other interpolation en
dc.subject.other mapping en
dc.subject.other optimization en
dc.subject.other sampling en
dc.subject.other stochasticity en
dc.subject.other waste disposal en
dc.subject.other Eurasia en
dc.subject.other Russian Federation en
dc.title Mapping optimization based on sampling size in earth related and environmental phenomena en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00477-006-0096-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00477-006-0096-8 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A critical sampling grid can be defined for an earth related natural variable distributed in space, according to established theoretical results and under certain mathematical conditions. Sampling above this critical limit does not substantially improve mapping results, while based on this limit the ideal process of reproducing the original phenomenon is theoretically defined. The aim of the present paper is, by using an innovative approach; to investigate the validity of commonly used interpolation algorithms, both stochastic and deterministic, below and above this critical sampling limit. When sampling is dense, application to a simulated spatial random field shows that the results are equally accurate with those derived with more sophisticated stochastic methods. On the other hand, when the sampling grid is sparse, deterministic methods produce less accurate results, therefore stochastic algorithms with minimum estimation error are a much better option. To further demonstrate these points, the interpolation algorithms were applied in three different sampling grid densities in a contaminated waste disposal site in Russia. © Springer-Verlag 2006. en
heal.publisher SPRINGER en
heal.journalName Stochastic Environmental Research and Risk Assessment en
dc.identifier.doi 10.1007/s00477-006-0096-8 en
dc.identifier.isi ISI:000251001100007 en
dc.identifier.volume 22 en
dc.identifier.issue 1 en
dc.identifier.spage 83 en
dc.identifier.epage 93 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής