dc.contributor.author |
Drygiannakis, AI |
en |
dc.contributor.author |
Papathanasiou, AG |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.date.accessioned |
2014-03-01T01:28:45Z |
|
dc.date.available |
2014-03-01T01:28:45Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0021-9797 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18955 |
|
dc.subject |
Contact angle |
en |
dc.subject |
Drop breakup |
en |
dc.subject |
Electrowetting |
en |
dc.subject |
Finite element method |
en |
dc.subject |
Turning point |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Bridges |
en |
dc.subject.other |
Drop breakup |
en |
dc.subject.other |
Drop formation |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Electrodes |
en |
dc.subject.other |
Hydraulics |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Joining |
en |
dc.subject.other |
Liquids |
en |
dc.subject.other |
Mechanisms |
en |
dc.subject.other |
Metallizing |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Turning |
en |
dc.subject.other |
Applied voltages |
en |
dc.subject.other |
Capillary bridges |
en |
dc.subject.other |
Contact angle |
en |
dc.subject.other |
Critical voltages |
en |
dc.subject.other |
Electrode plates |
en |
dc.subject.other |
Electrowetting |
en |
dc.subject.other |
Equilibrium shapes |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Free-boundary problems |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Liquid bridges |
en |
dc.subject.other |
Liquid droplets |
en |
dc.subject.other |
Parameter regions |
en |
dc.subject.other |
Pendant drops |
en |
dc.subject.other |
Relative positioning |
en |
dc.subject.other |
Shape transitions |
en |
dc.subject.other |
Solution spaces |
en |
dc.subject.other |
Turning point |
en |
dc.subject.other |
Turning points |
en |
dc.subject.other |
Fluid mechanics |
en |
dc.subject.other |
article |
en |
dc.subject.other |
electric potential |
en |
dc.subject.other |
electrode |
en |
dc.subject.other |
electrowetting |
en |
dc.subject.other |
equilibrium constant |
en |
dc.subject.other |
finite element analysis |
en |
dc.subject.other |
hydrostatic pressure |
en |
dc.subject.other |
illumination |
en |
dc.subject.other |
liquid |
en |
dc.subject.other |
liquid droplet |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
solution and solubility |
en |
dc.title |
Mechanisms of equilibrium shape transitions of liquid droplets in electrowetting |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jcis.2008.06.061 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jcis.2008.06.061 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Liquid droplets bridging the gap between two dielectric-coated horizontal electrode plates suffer breakup instabilities when a voltage applied between the electrodes exceeds a threshold. Interestingly enough, broken liquid bridges (i.e. a pair of a sessile and a pendant drop) can spontaneously rejoin if the voltage is still applied to the electrodes. Here we study the electro-hydrostatics of the liquid bridges in the joined or broken state and we illuminate the mechanisms of the shape transitions that lead to bridge rupture or droplet joining. The governing equations of the capillary electro-hydrostatics form nonlinear and free boundary problems which are solved numerically by the Galerkin/finite element method. On one hand, we found that capillary bridges become unstable at a turning point bifurcation in their solution space. The solutions past the turning point are unstable and the instability signals the bridge rupture. On the other hand, the separate droplets approach each other as the applied voltage increases. However, solutions become unstable past a Critical Voltage at a turning point bifurcation and the droplets join. By studying the relative position of the turning points corresponding to bridge rupture and droplet joining, respectively, we define parameter regions where stable bridges or separate droplets or oscillations between them can be realized. (c) 2008 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Colloid and Interface Science |
en |
dc.identifier.doi |
10.1016/j.jcis.2008.06.061 |
en |
dc.identifier.isi |
ISI:000259243600022 |
en |
dc.identifier.volume |
326 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
451 |
en |
dc.identifier.epage |
459 |
en |