HEAL DSpace

Modeling web navigation using grammatical inference

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Korfiatis, G en
dc.contributor.author Paliouras, G en
dc.date.accessioned 2014-03-01T01:28:47Z
dc.date.available 2014-03-01T01:28:47Z
dc.date.issued 2008 en
dc.identifier.issn 0883-9514 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18970
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Inference engines en
dc.subject.other Information use en
dc.subject.other Mathematical models en
dc.subject.other Merging en
dc.subject.other Web services en
dc.subject.other Content-based recommendation en
dc.subject.other Grammatical inference en
dc.subject.other User modeling en
dc.subject.other Web navigation en
dc.subject.other Computational grammars en
dc.title Modeling web navigation using grammatical inference en
heal.type journalArticle en
heal.identifier.primary 10.1080/08839510701853267 en
heal.identifier.secondary http://dx.doi.org/10.1080/08839510701853267 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this article, a method that models user navigation on the web, as opposed to a single website, is presented, aiming to assist the user by recommending pages. User modeling is done through data mining of web usage logs, resulting in aggregate, rather than personal models. The proposed approach extends grammatical inference methods by introducing an extra merging criterion, which examines the semantic similarity of automaton states. The experimental results showed that the method does indeed facilitate the modeling of web navigation, which was not possible with the existing web usage mining methods. However, a content-based recommendation model is shown to still outperform the proposed method, which suggests that the knowledge of the navigation sequence does not contribute to the recommendation process. This is due to the thematic cohesion of navigation sessions, in comparison to the large thematic diversity of web usage data. Among three variants of the proposed method, the one based on Blue Fringe, that examines a larger space of possible merges, performs better. en
heal.publisher TAYLOR & FRANCIS INC en
heal.journalName Applied Artificial Intelligence en
dc.identifier.doi 10.1080/08839510701853267 en
dc.identifier.isi ISI:000253657000006 en
dc.identifier.volume 22 en
dc.identifier.issue 1-2 en
dc.identifier.spage 116 en
dc.identifier.epage 138 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής