dc.contributor.author |
Gavriliadis, PN |
en |
dc.date.accessioned |
2014-03-01T01:28:47Z |
|
dc.date.available |
2014-03-01T01:28:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0361-0926 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18974 |
|
dc.subject |
Distribution functions |
en |
dc.subject |
Mode |
en |
dc.subject |
Moments |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Method of moments |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Moment problems |
en |
dc.subject.other |
Distribution functions |
en |
dc.title |
Moment information for probability distributions, without solving the moment problem. I: Where is the mode? |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03610920701499514 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03610920701499514 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
How much information does a small number of moments carry about the unknown distribution function? Is it possible to explicitly obtain from these moments some useful information, e.g., about the support, the modality, the general shape, or the tails of a distribution, without going into a detailed numerical solution of the moment problem? In this paper a theoretical result of Johnson and Rogers is generalized to be valid for all moment problems and is exploited to demonstrate that a few moments are able to provide us with valuable information about the position of the mode of an unknown (unimodal) distribution. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Communications in Statistics - Theory and Methods |
en |
dc.identifier.doi |
10.1080/03610920701499514 |
en |
dc.identifier.isi |
ISI:000252582800003 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
671 |
en |
dc.identifier.epage |
681 |
en |