dc.contributor.author |
Anagnostopoulos, KN |
en |
dc.contributor.author |
Hanada, M |
en |
dc.contributor.author |
Nishimura, J |
en |
dc.contributor.author |
Takeuchi, S |
en |
dc.date.accessioned |
2014-03-01T01:28:47Z |
|
dc.date.available |
2014-03-01T01:28:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0031-9007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18976 |
|
dc.subject |
Finite Temperature |
en |
dc.subject |
High Temperature |
en |
dc.subject |
Low Temperature |
en |
dc.subject |
Monte Carlo |
en |
dc.subject |
Monte Carlo Study |
en |
dc.subject |
Quantum Mechanics |
en |
dc.subject |
Strong Coupling |
en |
dc.subject |
Weak Coupling |
en |
dc.subject |
Black Hole |
en |
dc.subject |
Phase Transition |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
Fermions |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Low temperature effects |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Phase transitions |
en |
dc.subject.other |
Quantum theory |
en |
dc.subject.other |
Fermionic matrices |
en |
dc.subject.other |
Supersymmetric matrix |
en |
dc.subject.other |
Superchargers |
en |
dc.title |
Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevLett.100.021601 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevLett.100.021601 |
en |
heal.identifier.secondary |
021601 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16 supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results provide highly nontrivial evidence for the gauge-gravity duality. © 2008 The American Physical Society. |
en |
heal.publisher |
AMER PHYSICAL SOC |
en |
heal.journalName |
Physical Review Letters |
en |
dc.identifier.doi |
10.1103/PhysRevLett.100.021601 |
en |
dc.identifier.isi |
ISI:000252471200015 |
en |
dc.identifier.volume |
100 |
en |
dc.identifier.issue |
2 |
en |