dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:28:48Z |
|
dc.date.available |
2014-03-01T01:28:48Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0022-0396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18980 |
|
dc.subject |
Concave-convex nonlinearity |
en |
dc.subject |
Constant sign solutions |
en |
dc.subject |
Nodal solutions |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Truncated functional |
en |
dc.subject |
Upper-lower solution |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PRINCIPLE |
en |
dc.subject.other |
SOBOLEV |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
EXPONENTS |
en |
dc.title |
Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jde.2008.07.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jde.2008.07.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider a nonlinear elliptic equation driven by the p-Laplacian with Dirichlet boundary conditions. Using variational techniques combined with the method of upper-lower solutions and suitable truncation arguments, we establish the existence of at least five nontrivial solutions. Two positive, two negative and a nodal (sign-changing) solution. Our framework of analysis incorporates both coercive and p-superlinear problems. Also the result on multiple constant sign solutions incorporates the case of concave-convex nonlinearities. (C) 2008 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Differential Equations |
en |
dc.identifier.doi |
10.1016/j.jde.2008.07.004 |
en |
dc.identifier.isi |
ISI:000259127700008 |
en |
dc.identifier.volume |
245 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1883 |
en |
dc.identifier.epage |
1922 |
en |