HEAL DSpace

Multiplicative AF kinematic hardening in plasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dafalias, YF en
dc.contributor.author Kourousis, KI en
dc.contributor.author Saridis, GJ en
dc.date.accessioned 2014-03-01T01:28:48Z
dc.date.available 2014-03-01T01:28:48Z
dc.date.issued 2008 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18983
dc.subject Constitutive laws en
dc.subject Cyclic plasticity en
dc.subject Kinematic hardening en
dc.subject Ratcheting en
dc.subject.classification Mechanics en
dc.subject.other Cyclic loads en
dc.subject.other Hardening en
dc.subject.other Mathematical models en
dc.subject.other Plasticity en
dc.subject.other Stainless steel en
dc.subject.other Armstrong and Frederick (AF) kinematic hardening rule en
dc.subject.other Constitutive laws en
dc.subject.other Cyclic plasticity en
dc.subject.other Kinematic hardening en
dc.subject.other Ratcheting en
dc.subject.other Kinematics en
dc.title Multiplicative AF kinematic hardening in plasticity en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2008.01.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2008.01.001 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The basic innovation proposed in this work is to consider one of the two coefficients of the Armstrong and Frederick (AF) evolution equation for the back stress, function of another dimensionless second order internal variable evolving also according to an AF equation in what can be called a multiplicative AF kinematic hardening rule. Introducing the foregoing modification into some of the components of the back stress additive decomposition model proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of strain memory effect on the cyclic hardening of 316 stainless steel. In: Transactions of the 5th International Conference on Structural Mechanics in Reactor Technology, Berlin, no. Div L in 11/3], one obtains a refined model with improved performance in partial unloading/reloading and ratcheting. In many respects the multiplicative AF kinematic hardening scheme plays a role equivalent to that of the back stress with a threshold scheme introduced by Chaboche [Chaboche, J.L., 1991. On some modifications of kinematic hardening to improve the description of ratcheting effects. Int. J. Plasticity 7, 661-678] to improve ratcheting simulations. The basis equations are presented for both uniaxial and multiaxial stress spaces and the calibration of the model constants is addressed in detail. Numerical applications are executed for uniaxial cyclic loading only, and indicate that the proposed refinement can perform quite well in simulating uniaxial experimental data, including ratcheting, while the potential to simulate successfully multiaxial loading data is an issue to be addressed in the future. (c) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2008.01.001 en
dc.identifier.isi ISI:000255323900006 en
dc.identifier.volume 45 en
dc.identifier.issue 10 en
dc.identifier.spage 2861 en
dc.identifier.epage 2880 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής