dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Rocha, EM |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:28:48Z |
|
dc.date.available |
2014-03-01T01:28:48Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0944-2669 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18985 |
|
dc.subject |
Differential Operators |
en |
dc.subject |
Elliptic Equation |
en |
dc.subject |
Elliptic Problem |
en |
dc.subject |
Morse Theory |
en |
dc.subject |
Satisfiability |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
P-LAPLACIAN EQUATION |
en |
dc.subject.other |
SOBOLEV |
en |
dc.title |
Multiplicity theorems for superlinear elliptic problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00526-008-0172-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00526-008-0172-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper we study second order elliptic equations driven by the Laplacian and p-Laplacian differential operators and a nonlinearity which is (p-)superlinear (it satisfies the Ambrosetti-Rabinowitz condition). For the p-Laplacian equations we prove the existence of five nontrivial smooth solutions, namely two positive, two negative and a nodal solution. Finally we indicate how in the semilinear case, Morse theory can be used to produce six nontrivial solutions. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Calculus of Variations and Partial Differential Equations |
en |
dc.identifier.doi |
10.1007/s00526-008-0172-7 |
en |
dc.identifier.isi |
ISI:000256909400004 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
199 |
en |
dc.identifier.epage |
230 |
en |