HEAL DSpace

Multiplicity theorems for superlinear elliptic problems

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papageorgiou, NS en
dc.contributor.author Rocha, EM en
dc.contributor.author Staicu, V en
dc.date.accessioned 2014-03-01T01:28:48Z
dc.date.available 2014-03-01T01:28:48Z
dc.date.issued 2008 en
dc.identifier.issn 0944-2669 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18985
dc.subject Differential Operators en
dc.subject Elliptic Equation en
dc.subject Elliptic Problem en
dc.subject Morse Theory en
dc.subject Satisfiability en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other P-LAPLACIAN EQUATION en
dc.subject.other SOBOLEV en
dc.title Multiplicity theorems for superlinear elliptic problems en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00526-008-0172-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00526-008-0172-7 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper we study second order elliptic equations driven by the Laplacian and p-Laplacian differential operators and a nonlinearity which is (p-)superlinear (it satisfies the Ambrosetti-Rabinowitz condition). For the p-Laplacian equations we prove the existence of five nontrivial smooth solutions, namely two positive, two negative and a nodal solution. Finally we indicate how in the semilinear case, Morse theory can be used to produce six nontrivial solutions. © 2008 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Calculus of Variations and Partial Differential Equations en
dc.identifier.doi 10.1007/s00526-008-0172-7 en
dc.identifier.isi ISI:000256909400004 en
dc.identifier.volume 33 en
dc.identifier.issue 2 en
dc.identifier.spage 199 en
dc.identifier.epage 230 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record