HEAL DSpace

Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stavrakakis, GM en
dc.contributor.author Koukou, MK en
dc.contributor.author Vrachopoulos, MGr en
dc.contributor.author Markatos, NC en
dc.date.accessioned 2014-03-01T01:28:50Z
dc.date.available 2014-03-01T01:28:50Z
dc.date.issued 2008 en
dc.identifier.issn 0378-7788 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18988
dc.subject Buoyancy en
dc.subject CFD en
dc.subject Cross-ventilation en
dc.subject Natural ventilation en
dc.subject Thermal comfort en
dc.subject Turbulence en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Civil en
dc.subject.other Air pollution en
dc.subject.other Buildings en
dc.subject.other Energy utilization en
dc.subject.other Global warming en
dc.subject.other Thermal comfort en
dc.subject.other Buoyancy effects en
dc.subject.other Natural cross ventilation en
dc.subject.other Natural ventilation en
dc.subject.other Ventilation en
dc.title Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enbuild.2008.02.022 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enbuild.2008.02.022 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The constantly increasing energy consumption due to the use of mechanical ventilation contributes to atmospheric pollution and global warming. An alternative method to overcome this problem is natural ventilation. The proper design of natural ventilation must be based on detailed understanding of airflow within enclosed spaces, governed by pressure differences due to wind and buoyancy forces. In the present study, natural cross-ventilation with openings at non-symmetrical locations is examined experimentally in a test chamber and numerically using advanced computational fluid dynamics techniques. The experimental part consisted of temperature and velocity measurements at strategically selected locations in the chamber, during noon and afternoon hours of typical summer days. External weather conditions were recorded by a weather station at the chamber's site. The computational part of the study consisted of the steady-state application of three Reynolds-Averaged Navier-Stokes (RANS) models modified to account for both wind and buoyancy effects: the standard k-epsilon, the RNG k-epsilon and the so-called "realizable" k-epsilon models. Two computational domains were used, corresponding to each recorded wind incidence angle. It is concluded that all turbulence models applied agree relatively well with the experimental measurements. The indoor thermal environment was also studied using two thermal comfort models found in literature for the estimation of thermal comfort under high-temperature experimental conditions. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Energy and Buildings en
dc.identifier.doi 10.1016/j.enbuild.2008.02.022 en
dc.identifier.isi ISI:000257349700007 en
dc.identifier.volume 40 en
dc.identifier.issue 9 en
dc.identifier.spage 1666 en
dc.identifier.epage 1681 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής