dc.contributor.author |
Papaioannou, IV |
en |
dc.contributor.author |
Roussaki, IG |
en |
dc.contributor.author |
Anagnostou, ME |
en |
dc.date.accessioned |
2014-03-01T01:28:51Z |
|
dc.date.available |
2014-03-01T01:28:51Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
15701263 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18993 |
|
dc.subject |
Automated negotiations |
en |
dc.subject |
E-marketplace |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Intelligent negotiating agents |
en |
dc.subject |
Neural networks |
en |
dc.subject.other |
Agents |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Data structures |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Internet protocols |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Ambient Intelligence (AmI) |
en |
dc.subject.other |
Automated negotiations |
en |
dc.subject.other |
Contract number |
en |
dc.subject.other |
European Commission (CO) |
en |
dc.subject.other |
Framework Programme (FP) |
en |
dc.subject.other |
Integrated project |
en |
dc.subject.other |
Learning techniques |
en |
dc.subject.other |
Negotiation strategies |
en |
dc.subject.other |
Networked home |
en |
dc.subject.other |
Radial basis function neural network (RBFNN) |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Neural networks against genetic algorithms for negotiating agent behaviour prediction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3233/WIA-2008-0138 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3233/WIA-2008-0138 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners is a quite challenging research field. This paper proposes to enhance such agents with learning techniques, in order to achieve more profitable results for the parties they represent. The proposed learning techniques are based on MLP or RBF neural networks (NNs) and are quite lightweight. Alternatively, the agents use Genetic Algorithms (GAs) to predict the behaviour of their opponents. All designed approaches aim to reduce the cases of unsuccessful negotiations and maximize the client's utility. The designed NN- and GA-assisted negotiation strategies This work has in part been supported by the project ""Amigo - Ambient intelligence for the networked home environment"". The Amigo project is funded by the European Commission as an integrated project (IP) in the Sixth Framework Programme under the contract number IST 004182. For more information you may refer to www.amigo-project.org. have been compared and empirically evaluated via numerous experiments. © 2008 - IOS Press and the authors. All right reserved. |
en |
heal.journalName |
Web Intelligence and Agent Systems |
en |
dc.identifier.doi |
10.3233/WIA-2008-0138 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
217 |
en |
dc.identifier.epage |
233 |
en |