HEAL DSpace

Neural networks against genetic algorithms for negotiating agent behaviour prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaioannou, IV en
dc.contributor.author Roussaki, IG en
dc.contributor.author Anagnostou, ME en
dc.date.accessioned 2014-03-01T01:28:51Z
dc.date.available 2014-03-01T01:28:51Z
dc.date.issued 2008 en
dc.identifier.issn 15701263 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18993
dc.subject Automated negotiations en
dc.subject E-marketplace en
dc.subject Genetic algorithms en
dc.subject Intelligent negotiating agents en
dc.subject Neural networks en
dc.subject.other Agents en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Data structures en
dc.subject.other Genetic algorithms en
dc.subject.other Internet protocols en
dc.subject.other Learning algorithms en
dc.subject.other Ambient Intelligence (AmI) en
dc.subject.other Automated negotiations en
dc.subject.other Contract number en
dc.subject.other European Commission (CO) en
dc.subject.other Framework Programme (FP) en
dc.subject.other Integrated project en
dc.subject.other Learning techniques en
dc.subject.other Negotiation strategies en
dc.subject.other Networked home en
dc.subject.other Radial basis function neural network (RBFNN) en
dc.subject.other Neural networks en
dc.title Neural networks against genetic algorithms for negotiating agent behaviour prediction en
heal.type journalArticle en
heal.identifier.primary 10.3233/WIA-2008-0138 en
heal.identifier.secondary http://dx.doi.org/10.3233/WIA-2008-0138 en
heal.publicationDate 2008 en
heal.abstract The design and evaluation of agents handling automated negotiations on behalf of their human or corporate owners is a quite challenging research field. This paper proposes to enhance such agents with learning techniques, in order to achieve more profitable results for the parties they represent. The proposed learning techniques are based on MLP or RBF neural networks (NNs) and are quite lightweight. Alternatively, the agents use Genetic Algorithms (GAs) to predict the behaviour of their opponents. All designed approaches aim to reduce the cases of unsuccessful negotiations and maximize the client's utility. The designed NN- and GA-assisted negotiation strategies This work has in part been supported by the project ""Amigo - Ambient intelligence for the networked home environment"". The Amigo project is funded by the European Commission as an integrated project (IP) in the Sixth Framework Programme under the contract number IST 004182. For more information you may refer to www.amigo-project.org. have been compared and empirically evaluated via numerous experiments. © 2008 - IOS Press and the authors. All right reserved. en
heal.journalName Web Intelligence and Agent Systems en
dc.identifier.doi 10.3233/WIA-2008-0138 en
dc.identifier.volume 6 en
dc.identifier.issue 2 en
dc.identifier.spage 217 en
dc.identifier.epage 233 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής