dc.contributor.author |
Alexandrakis, S |
en |
dc.contributor.author |
Benardos, P |
en |
dc.contributor.author |
Vosniakos, G-C |
en |
dc.contributor.author |
Tsouvalis, N |
en |
dc.date.accessioned |
2014-03-01T01:28:51Z |
|
dc.date.available |
2014-03-01T01:28:51Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0268-1900 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18994 |
|
dc.subject |
ANN |
en |
dc.subject |
CNC |
en |
dc.subject |
GRFC |
en |
dc.subject |
Image analysis |
en |
dc.subject |
Surface roughness |
en |
dc.subject |
Taguchi |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
Epoxy resins |
en |
dc.subject.other |
Fiber reinforced plastics |
en |
dc.subject.other |
Friction |
en |
dc.subject.other |
Glass |
en |
dc.subject.other |
Glass fibers |
en |
dc.subject.other |
Painting |
en |
dc.subject.other |
Resins |
en |
dc.subject.other |
Steel analysis |
en |
dc.subject.other |
Surface properties |
en |
dc.subject.other |
Surface roughness |
en |
dc.subject.other |
(1 1 0) surface |
en |
dc.subject.other |
Artificial Neural Network (ANN) models |
en |
dc.subject.other |
Cnc machining |
en |
dc.subject.other |
Computational tools |
en |
dc.subject.other |
cutting conditions |
en |
dc.subject.other |
Damaging effects |
en |
dc.subject.other |
Designed experiments (DoE) |
en |
dc.subject.other |
Fibre reinforced |
en |
dc.subject.other |
Roughness models |
en |
dc.subject.other |
Stabiliser |
en |
dc.subject.other |
Surface qualities |
en |
dc.subject.other |
Taguchi |
en |
dc.subject.other |
Woven roving |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Neural surface roughness models of CNC machined glass fibre reinforced composites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1504/IJMPT.2008.018986 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1504/IJMPT.2008.018986 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
CNC machining of parts from pre-made Glass Fibre Reinforced Composites (GFRCs) blocks started gaining ground. However, wrong cutting conditions result in poor surface quality, delaminations or other damaging effects. In this work, a computational tool is developed to help improve machinability of these parts by accounting for surface quality. Artificial Neural Network models trained with data obtained through Taguchi-style designed experiments predict surface roughness obtained. GFRC blocks made from D.E.R.321 epoxy resin, CHEM.93-1-74, PC12 stabiliser and Woven Roving (500 gr/m2 and 800 gr/m2) were CNC machined. Microscopy and image analysis studies enrich the ANN models with machined material macro-structural characteristics. Copyright © 2008 Inderscience Enterprises Ltd. |
en |
heal.publisher |
INDERSCIENCE ENTERPRISES LTD |
en |
heal.journalName |
International Journal of Materials and Product Technology |
en |
dc.identifier.doi |
10.1504/IJMPT.2008.018986 |
en |
dc.identifier.isi |
ISI:000256711800012 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
2-3 |
en |
dc.identifier.spage |
276 |
en |
dc.identifier.epage |
294 |
en |