HEAL DSpace

Neural surface roughness models of CNC machined glass fibre reinforced composites

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandrakis, S en
dc.contributor.author Benardos, P en
dc.contributor.author Vosniakos, G-C en
dc.contributor.author Tsouvalis, N en
dc.date.accessioned 2014-03-01T01:28:51Z
dc.date.available 2014-03-01T01:28:51Z
dc.date.issued 2008 en
dc.identifier.issn 0268-1900 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18994
dc.subject ANN en
dc.subject CNC en
dc.subject GRFC en
dc.subject Image analysis en
dc.subject Surface roughness en
dc.subject Taguchi en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.other Epoxy resins en
dc.subject.other Fiber reinforced plastics en
dc.subject.other Friction en
dc.subject.other Glass en
dc.subject.other Glass fibers en
dc.subject.other Painting en
dc.subject.other Resins en
dc.subject.other Steel analysis en
dc.subject.other Surface properties en
dc.subject.other Surface roughness en
dc.subject.other (1 1 0) surface en
dc.subject.other Artificial Neural Network (ANN) models en
dc.subject.other Cnc machining en
dc.subject.other Computational tools en
dc.subject.other cutting conditions en
dc.subject.other Damaging effects en
dc.subject.other Designed experiments (DoE) en
dc.subject.other Fibre reinforced en
dc.subject.other Roughness models en
dc.subject.other Stabiliser en
dc.subject.other Surface qualities en
dc.subject.other Taguchi en
dc.subject.other Woven roving en
dc.subject.other Neural networks en
dc.title Neural surface roughness models of CNC machined glass fibre reinforced composites en
heal.type journalArticle en
heal.identifier.primary 10.1504/IJMPT.2008.018986 en
heal.identifier.secondary http://dx.doi.org/10.1504/IJMPT.2008.018986 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract CNC machining of parts from pre-made Glass Fibre Reinforced Composites (GFRCs) blocks started gaining ground. However, wrong cutting conditions result in poor surface quality, delaminations or other damaging effects. In this work, a computational tool is developed to help improve machinability of these parts by accounting for surface quality. Artificial Neural Network models trained with data obtained through Taguchi-style designed experiments predict surface roughness obtained. GFRC blocks made from D.E.R.321 epoxy resin, CHEM.93-1-74, PC12 stabiliser and Woven Roving (500 gr/m2 and 800 gr/m2) were CNC machined. Microscopy and image analysis studies enrich the ANN models with machined material macro-structural characteristics. Copyright © 2008 Inderscience Enterprises Ltd. en
heal.publisher INDERSCIENCE ENTERPRISES LTD en
heal.journalName International Journal of Materials and Product Technology en
dc.identifier.doi 10.1504/IJMPT.2008.018986 en
dc.identifier.isi ISI:000256711800012 en
dc.identifier.volume 32 en
dc.identifier.issue 2-3 en
dc.identifier.spage 276 en
dc.identifier.epage 294 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής