HEAL DSpace

New partial differential equations governing the joint, response-excitation, probability distributions of nonlinear systems, under general stochastic excitation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapsis, TP en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:28:51Z
dc.date.available 2014-03-01T01:28:51Z
dc.date.issued 2008 en
dc.identifier.issn 0266-8920 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18998
dc.subject Characteristic functional en
dc.subject Correlated stochastic excitation en
dc.subject Functional Differential equations en
dc.subject Generalized Fokker-Planck-Kolmogorov equation en
dc.subject Kernel density functions en
dc.subject Non-Markovian responses en
dc.subject Stochastic differential equations en
dc.subject Stochastic dynamics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.classification Statistics & Probability en
dc.subject.other Control nonlinearities en
dc.subject.other Nonlinear systems en
dc.subject.other Numerical methods en
dc.subject.other Polynomials en
dc.subject.other Probability distributions en
dc.subject.other Random processes en
dc.subject.other Characteristic functional en
dc.subject.other Correlated stochastic excitation en
dc.subject.other Functional Differential equations en
dc.subject.other Generalized Fokker-Planck-Kolmogorov equation en
dc.subject.other Kernel density functions en
dc.subject.other Stochastic differential equations en
dc.subject.other Partial differential equations en
dc.title New partial differential equations governing the joint, response-excitation, probability distributions of nonlinear systems, under general stochastic excitation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.probengmech.2007.12.028 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.probengmech.2007.12.028 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In the present work the problem of determining the probabilistic structure of the dynamical response of nonlinear systems Subjected to general, external, stochastic excitation is considered. The starting point Of Our approach is a Hopf-type equation, governing the evolution of the joint, response-excitation, characteristic functional. Exploiting this equation, we derive new linear partial differential equations governing the joint, response-excitation, characteristic (or probability density) function, which can be considered as an extension of the well-known Fokker-Planck-Kolmogorov equation to the case of a general, correlated excitation and, thus, non-Markovian response character. These new equations are Supplemented by initial conditions and a marginal compatibility condition (with respect to the known probability distribution of the excitation), which is of non-local character. The validity of this new equation is also checked by showing its equivalence with the infinite system of moment equations. The method is applicable to any differential system, in state-space form, exhibiting polynomial nonlinearities. In this paper the method is illustrated through a detailed analysis of a simple, first-order, scalar equation, with a cubic nonlinearity. It is also shown that various versions of Fokker-Planck-Kolmogorov equation, corresponding to the case of independent-increment excitations, can be derived by using the same approach. A numerical method for the solution of these new equations is introduced and illustrated through its application to the simple model problem. It is based on the representation of the joint probability density (or characteristic) function by means of a convex superposition of kernel functions, which permits us to satisfy a priori the non-local marginal compatibility condition. On the basis of this representation, the partial differential equation is eventually transformed to a system of ordinary differential equations for the kernel parameters. Extension to general, multidimensional, dynamical systems exhibiting any polynomial nonlinearity will be presented in a forthcoming paper. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Probabilistic Engineering Mechanics en
dc.identifier.doi 10.1016/j.probengmech.2007.12.028 en
dc.identifier.isi ISI:000255567300021 en
dc.identifier.volume 23 en
dc.identifier.issue 2-3 en
dc.identifier.spage 289 en
dc.identifier.epage 306 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής