HEAL DSpace

Nonlinear analysis of beams of variable cross section, including shear deformation effect

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Panagos, DG en
dc.date.accessioned 2014-03-01T01:28:52Z
dc.date.available 2014-03-01T01:28:52Z
dc.date.issued 2008 en
dc.identifier.issn 0939-1533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19003
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Nonlinear analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject Variable cross section en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Deformation en
dc.subject.other Differential equations en
dc.subject.other Electromagnetic prospecting en
dc.subject.other Initial value problems en
dc.subject.other Nonlinear analysis en
dc.subject.other Shear deformation en
dc.subject.other Analog equation method (AEM) en
dc.subject.other Analysis of beams en
dc.subject.other Axial displacements en
dc.subject.other Axial loadings en
dc.subject.other Boundary elements en
dc.subject.other Boundary integration en
dc.subject.other Boundary values en
dc.subject.other Cross sectioning en
dc.subject.other General boundary conditions en
dc.subject.other Iterative processing en
dc.subject.other Large deflections en
dc.subject.other Numerical examples en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Shear loadings en
dc.subject.other Stress functions en
dc.subject.other System of nonlinear equations en
dc.subject.other Timoshenko beams en
dc.subject.other Transverse displacements en
dc.subject.other Twisting moments en
dc.subject.other Variable cross section en
dc.subject.other Nonlinear equations en
dc.title Nonlinear analysis of beams of variable cross section, including shear deformation effect en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00419-007-0182-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00419-007-0182-5 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper the analog equation method (AEM), a BEM-based method, is employed for the nonlinear analysis of a Timoshenko beam with simply or multiply connected variable cross section undergoing large deflections under general boundary conditions. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of nonlinear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of the shear deformation effect is remarkable. © 2007 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/s00419-007-0182-5 en
dc.identifier.isi ISI:000258593700002 en
dc.identifier.volume 78 en
dc.identifier.issue 9 en
dc.identifier.spage 687 en
dc.identifier.epage 710 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής