dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Panagos, DG |
en |
dc.date.accessioned |
2014-03-01T01:28:52Z |
|
dc.date.available |
2014-03-01T01:28:52Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19003 |
|
dc.subject |
Beam |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Nonlinear analysis |
en |
dc.subject |
Shear center |
en |
dc.subject |
Shear deformation coefficients |
en |
dc.subject |
Transverse shear stresses |
en |
dc.subject |
Variable cross section |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Electromagnetic prospecting |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Analog equation method (AEM) |
en |
dc.subject.other |
Analysis of beams |
en |
dc.subject.other |
Axial displacements |
en |
dc.subject.other |
Axial loadings |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Boundary integration |
en |
dc.subject.other |
Boundary values |
en |
dc.subject.other |
Cross sectioning |
en |
dc.subject.other |
General boundary conditions |
en |
dc.subject.other |
Iterative processing |
en |
dc.subject.other |
Large deflections |
en |
dc.subject.other |
Numerical examples |
en |
dc.subject.other |
Shear center |
en |
dc.subject.other |
Shear deformation coefficients |
en |
dc.subject.other |
Shear loadings |
en |
dc.subject.other |
Stress functions |
en |
dc.subject.other |
System of nonlinear equations |
en |
dc.subject.other |
Timoshenko beams |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Twisting moments |
en |
dc.subject.other |
Variable cross section |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Nonlinear analysis of beams of variable cross section, including shear deformation effect |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00419-007-0182-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-007-0182-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper the analog equation method (AEM), a BEM-based method, is employed for the nonlinear analysis of a Timoshenko beam with simply or multiply connected variable cross section undergoing large deflections under general boundary conditions. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of nonlinear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of the shear deformation effect is remarkable. © 2007 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-007-0182-5 |
en |
dc.identifier.isi |
ISI:000258593700002 |
en |
dc.identifier.volume |
78 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
687 |
en |
dc.identifier.epage |
710 |
en |