HEAL DSpace

Nonlinear inelastic uniform torsion of bars by BEM

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Tsipiras, VJ en
dc.date.accessioned 2014-03-01T01:28:52Z
dc.date.available 2014-03-01T01:28:52Z
dc.date.issued 2008 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19005
dc.subject Bar en
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Elastoplastic en
dc.subject Inelastic en
dc.subject Plastic en
dc.subject Shear stresses en
dc.subject Twist en
dc.subject Uniform torsion en
dc.subject Wagner strain en
dc.subject Warping en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Plastic deformation en
dc.subject.other Rigidity en
dc.subject.other Shear stress en
dc.subject.other Stress-strain curves en
dc.subject.other Geometric nonlinearity en
dc.subject.other Plastic-strain hardening en
dc.subject.other Uniform torsion en
dc.subject.other Wagner strain en
dc.subject.other Elastoplasticity en
dc.title Nonlinear inelastic uniform torsion of bars by BEM en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-007-0236-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-007-0236-0 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper the elastic-plastic uniform torsion analysis of simply or multiply connected cylindrical bars of arbitrary cross-section taking into account the effect of geometric nonlinearity is presented employing the boundary element method. The stress-strain relationship for the material is assumed to be elastic-plastic-strain hardening. The incremental torque-rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the ""Wagner strain"". The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross-section's torsional rigidity is evaluated exactly without using the so-called Saint-Venant's torsional constant. The torsional rigidity of the cross-section is evaluated directly employing the primary warping function of the cross-section depending on both its shape and the progress of the plastic region. A boundary value problem with respect to the aforementioned function is formulated and solved employing a BEM approach. The influence of the second Piola-Kirchhoff normal stress component to the plastic/elastic moment ratio in uniform inelastic torsion is demonstrated. The developed procedure retains most of the advantages of a BEM solution over a pure domain discretization method, although it requires domain discretization, which is used only to evaluate integrals. © 2007 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-007-0236-0 en
dc.identifier.isi ISI:000254402200006 en
dc.identifier.volume 42 en
dc.identifier.issue 1 en
dc.identifier.spage 77 en
dc.identifier.epage 94 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής