dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:28:52Z |
|
dc.date.available |
2014-03-01T01:28:52Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
00981354 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19007 |
|
dc.subject |
Distributed parameter systems |
en |
dc.subject |
Model predictive control |
en |
dc.subject |
Radial basis function neural networks |
en |
dc.subject |
Singular value decomposition |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Singular value decomposition |
en |
dc.subject.other |
Distributed parameter systems (DPS) |
en |
dc.subject.other |
Spatial behavior |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Singular value decomposition |
en |
dc.title |
Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compchemeng.2007.05.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compchemeng.2007.05.002 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this work the radial basis function neural network architecture is used to model the dynamics of Distributed Parameter Systems (DPSs). Two pure data driving schemes which do not require knowledge of the governing equations are described and compared. In the first method, the neural network methodology generates the full model of the system that is able to predict the process outputs at any spatial point. Past values of the process inputs and the coordinates of the specific location provide the input information to the model. The second method uses empirical basis functions produced by the Singular Value Decomposition (SVD) on the snapshot matrix to describe the spatial behavior of the system, while the neural network model is used to estimate only the temporal coefficients. The models produced by both methods are then implemented in Model Predictive Control (MPC) configurations, suitable for constrained DPSs. The accuracies of the modeling methodologies and the efficiencies of the proposed MPC formulations are tested in a tubular reactor and produce encouraging results. © 2007 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Computers and Chemical Engineering |
en |
dc.identifier.doi |
10.1016/j.compchemeng.2007.05.002 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1233 |
en |
dc.identifier.epage |
1245 |
en |