HEAL DSpace

Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Aggelogiannaki, E en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:28:52Z
dc.date.available 2014-03-01T01:28:52Z
dc.date.issued 2008 en
dc.identifier.issn 00981354 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19007
dc.subject Distributed parameter systems en
dc.subject Model predictive control en
dc.subject Radial basis function neural networks en
dc.subject Singular value decomposition en
dc.subject.other Distributed computer systems en
dc.subject.other Nonlinear systems en
dc.subject.other Radial basis function networks en
dc.subject.other Singular value decomposition en
dc.subject.other Distributed parameter systems (DPS) en
dc.subject.other Spatial behavior en
dc.subject.other Model predictive control en
dc.subject.other Distributed computer systems en
dc.subject.other Model predictive control en
dc.subject.other Nonlinear systems en
dc.subject.other Radial basis function networks en
dc.subject.other Singular value decomposition en
dc.title Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compchemeng.2007.05.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compchemeng.2007.05.002 en
heal.publicationDate 2008 en
heal.abstract In this work the radial basis function neural network architecture is used to model the dynamics of Distributed Parameter Systems (DPSs). Two pure data driving schemes which do not require knowledge of the governing equations are described and compared. In the first method, the neural network methodology generates the full model of the system that is able to predict the process outputs at any spatial point. Past values of the process inputs and the coordinates of the specific location provide the input information to the model. The second method uses empirical basis functions produced by the Singular Value Decomposition (SVD) on the snapshot matrix to describe the spatial behavior of the system, while the neural network model is used to estimate only the temporal coefficients. The models produced by both methods are then implemented in Model Predictive Control (MPC) configurations, suitable for constrained DPSs. The accuracies of the modeling methodologies and the efficiencies of the proposed MPC formulations are tested in a tubular reactor and produce encouraging results. © 2007 Elsevier Ltd. All rights reserved. en
heal.journalName Computers and Chemical Engineering en
dc.identifier.doi 10.1016/j.compchemeng.2007.05.002 en
dc.identifier.volume 32 en
dc.identifier.issue 6 en
dc.identifier.spage 1233 en
dc.identifier.epage 1245 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής