HEAL DSpace

Nonlinear theory of cyclotron resonant wave-particle interactions: Analytical results beyond the quasilinear approximation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kominis, Y en
dc.date.accessioned 2014-03-01T01:28:52Z
dc.date.available 2014-03-01T01:28:52Z
dc.date.issued 2008 en
dc.identifier.issn 1539-3755 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19008
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.classification Physics, Mathematical en
dc.subject.other Cyclotron resonance en
dc.subject.other Distribution functions en
dc.subject.other Hamiltonians en
dc.subject.other Linear equations en
dc.subject.other Nonlinear analysis en
dc.subject.other Perturbation techniques en
dc.subject.other Nonlinear theory en
dc.subject.other Quasilinear diffusion equations en
dc.subject.other Elementary particles en
dc.title Nonlinear theory of cyclotron resonant wave-particle interactions: Analytical results beyond the quasilinear approximation en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevE.77.016404 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevE.77.016404 en
heal.identifier.secondary 016404 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Cyclotron resonant wave-particle interactions are studied in the context of Hamiltonian theory with utilization of Lie transform techniques. The canonical perturbation method for single particle motion is used for providing results for the collective particle behavior under interaction with wave fields of either localized or periodic profiles. Analytical expressions for the calculation of phase-averaged quantities of physical interest as well as the diffusion equation are derived. In the lowest order of perturbation, the method reformulates in a rigorous and unifying context the derivation of well-known results, namely Madey's theorem and quasilinear diffusion equation. Proceeding to higher order the method provides results consisting of fourth-order accurate analytical expressions for the calculation of phase-averaged quantities as well as the derivation of a fourth-order accurate diffusion equation, with higher-order derivatives, which is the extension of the well-known Fokker-Planck equation beyond the quasilinear approximation. Higher-order terms are related to the effect of nonlinear resonant coupling between different spectral components of the waves, on the evolution of the particle distribution function. © 2008 The American Physical Society. en
heal.publisher AMER PHYSICAL SOC en
heal.journalName Physical Review E - Statistical, Nonlinear, and Soft Matter Physics en
dc.identifier.doi 10.1103/PhysRevE.77.016404 en
dc.identifier.isi ISI:000252861600040 en
dc.identifier.volume 77 en
dc.identifier.issue 1 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής