dc.contributor.author |
Anastasopoulos, I |
en |
dc.contributor.author |
Callerio, A |
en |
dc.contributor.author |
Bransby, MF |
en |
dc.contributor.author |
Davies, MCR |
en |
dc.contributor.author |
El Nahas, A |
en |
dc.contributor.author |
Faccioli, E |
en |
dc.contributor.author |
Gazetas, G |
en |
dc.contributor.author |
Masella, A |
en |
dc.contributor.author |
Paolucci, R |
en |
dc.contributor.author |
Pecker, A |
en |
dc.contributor.author |
Rossignol, E |
en |
dc.date.accessioned |
2014-03-01T01:28:52Z |
|
dc.date.available |
2014-03-01T01:28:52Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1570-761X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19014 |
|
dc.subject |
Centrifuge model tests |
en |
dc.subject |
Fault rupture propagation |
en |
dc.subject |
Soil-structure-interaction |
en |
dc.subject |
Strip foundation |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Centrifugation |
en |
dc.subject.other |
Centrifuges |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Flow interactions |
en |
dc.subject.other |
Foundations |
en |
dc.subject.other |
Geologic models |
en |
dc.subject.other |
Model structures |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Analysis methods |
en |
dc.subject.other |
Centrifuge model tests |
en |
dc.subject.other |
Fault rupture propagation |
en |
dc.subject.other |
Fault rupture propagations |
en |
dc.subject.other |
Fault ruptures |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
Interface elements |
en |
dc.subject.other |
Methods of analysis |
en |
dc.subject.other |
Normal faults |
en |
dc.subject.other |
Parametric studies |
en |
dc.subject.other |
Pre-requisites |
en |
dc.subject.other |
Residential structures |
en |
dc.subject.other |
Scotland |
en |
dc.subject.other |
Soil depths |
en |
dc.subject.other |
Soil models |
en |
dc.subject.other |
Soil softening |
en |
dc.subject.other |
Strip foundation |
en |
dc.subject.other |
Structure systems |
en |
dc.subject.other |
Surcharge loads |
en |
dc.subject.other |
Surface dislocations |
en |
dc.subject.other |
Structural design |
en |
dc.subject.other |
centrifuge |
en |
dc.subject.other |
earthquake |
en |
dc.subject.other |
fault |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
foundation |
en |
dc.subject.other |
model test |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
rupture |
en |
dc.title |
Numerical analyses of fault-foundation interaction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10518-008-9078-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10518-008-9078-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Field evidence from recent earthquakes has shown that structures can be designed to survive major surface dislocations. This paper: (i) Describes three different finite element (FE) methods of analysis, that were developed to simulate dip slip fault rupture propagation through soil and its interaction with foundation-structure systems; (ii) Validates the developed FE methodologies against centrifuge model tests that were conducted at the University of Dundee, Scotland; and (iii) Utilises one of these analysis methods to conduct a short parametric study on the interaction of idealised 2- and 5-story residential structures lying on slab foundations subjected to normal fault rupture. The comparison between numerical and centrifuge model test results shows that reliable predictions can be achieved with reasonably sophisticated constitutive soil models that take account of soil softening after failure. A prerequisite is an adequately refined FE mesh, combined with interface elements with tension cut-off between the soil and the structure. The results of the parametric study reveal that the increase of the surcharge load q of the structure leads to larger fault rupture diversion and ""smoothing"" of the settlement profile, allowing reduction of its stressing. Soil compliance is shown to be beneficial to the stressing of a structure. For a given soil depth H and imposed dislocation h, the rotation Δθ of the structure is shown to be a function of: (a) its location relative to the fault rupture; (b) the surcharge load q; and (c) soil compliance. © 2008 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Bulletin of Earthquake Engineering |
en |
dc.identifier.doi |
10.1007/s10518-008-9078-1 |
en |
dc.identifier.isi |
ISI:000260766100006 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
645 |
en |
dc.identifier.epage |
675 |
en |