dc.contributor.author |
Strotos, G |
en |
dc.contributor.author |
Gavaises, M |
en |
dc.contributor.author |
Theodorakakos, A |
en |
dc.contributor.author |
Bergeles, G |
en |
dc.date.accessioned |
2014-03-01T01:28:53Z |
|
dc.date.available |
2014-03-01T01:28:53Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0017-9310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19015 |
|
dc.subject |
Droplet deposition |
en |
dc.subject |
Droplet impact |
en |
dc.subject |
Heated wall |
en |
dc.subject |
Vaporisation |
en |
dc.subject |
VOF |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Air |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Cooling |
en |
dc.subject.other |
Drop formation |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Evaporation |
en |
dc.subject.other |
Fluid dynamics |
en |
dc.subject.other |
Fluid mechanics |
en |
dc.subject.other |
Fluids |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Heat conduction |
en |
dc.subject.other |
Liquid phase epitaxy |
en |
dc.subject.other |
Liquids |
en |
dc.subject.other |
Moisture |
en |
dc.subject.other |
Vapors |
en |
dc.subject.other |
Walls (structural partitions) |
en |
dc.subject.other |
Air flows |
en |
dc.subject.other |
Atmospheric conditions |
en |
dc.subject.other |
Cooling effectiveness |
en |
dc.subject.other |
Coupled problems |
en |
dc.subject.other |
Droplet deposition |
en |
dc.subject.other |
Droplet impact |
en |
dc.subject.other |
Droplet impinging |
en |
dc.subject.other |
Droplet shape |
en |
dc.subject.other |
Evaporation rate |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Experimental observations |
en |
dc.subject.other |
Fick's laws |
en |
dc.subject.other |
Flow distributions |
en |
dc.subject.other |
Flow mechanisms |
en |
dc.subject.other |
Fluid flowing |
en |
dc.subject.other |
Free surfaces |
en |
dc.subject.other |
Heat conduction equation |
en |
dc.subject.other |
Heat-transfer |
en |
dc.subject.other |
Heated surfaces |
en |
dc.subject.other |
Heated wall |
en |
dc.subject.other |
Impact velocities |
en |
dc.subject.other |
Initial stages |
en |
dc.subject.other |
Liquid deposition |
en |
dc.subject.other |
Liquid distributions |
en |
dc.subject.other |
Liquid vaporization |
en |
dc.subject.other |
Liquid-gas interfaces |
en |
dc.subject.other |
Local temperatures |
en |
dc.subject.other |
Model based |
en |
dc.subject.other |
Model predictions |
en |
dc.subject.other |
Non-equilibrium conditions |
en |
dc.subject.other |
Numerica l results |
en |
dc.subject.other |
Numerical investigations |
en |
dc.subject.other |
Numerical simulations |
en |
dc.subject.other |
Phase changes |
en |
dc.subject.other |
Physical Properties |
en |
dc.subject.other |
Solid walls |
en |
dc.subject.other |
Test cases |
en |
dc.subject.other |
Transitional period |
en |
dc.subject.other |
Vaporisation |
en |
dc.subject.other |
VOF |
en |
dc.subject.other |
Water droplets |
en |
dc.subject.other |
Phase interfaces |
en |
dc.title |
Numerical investigation of the cooling effectiveness of a droplet impinging on a heated surface |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijheatmasstransfer.2008.02.036 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.036 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Computational fluid dynamics numerical simulations for 2.0 mm water droplets impinging normal onto a flat heated surface under atmospheric conditions are presented and validated against experimental data. The Coupled problem of liquid and air flow,. heat transfer with the solid wall together with the liquid vaporization process from the droplet's free surface is predicted using a VOF-based methodology accounting for phase-change. The cooling of the solid wall surface, initially at 120 degrees C, is predicted by solving simultaneously with the fluid flow and evaporation processes, the heat conduction equation within the solid wall. The range of impact velocities examined was between 1.3 and 3.0 m/s while focus is given to the process during the transitional period of the initial stages of impact prior to liquid deposition. The droplet's evaporation rate is predicted using a model based oil Fick's law and considers variable physical properties which are a function of the local temperature and composition. Additionally, a kinetic theory model was used to evaluate the importance of thermal non-equilibrium conditions at the liquid-gas interface and which have been found to be negligible fertile test cases investigated. The numerical results are compared against experimental data, showing satisfactory agreement. Model predictions for the droplet shape, temperature, flow distribution and vaporised liquid distribution reveal the detailed flow mechanisms that cannot be easily obtained from the experimental observations. (c) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Heat and Mass Transfer |
en |
dc.identifier.doi |
10.1016/j.ijheatmasstransfer.2008.02.036 |
en |
dc.identifier.isi |
ISI:000259654600012 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
19-20 |
en |
dc.identifier.spage |
4728 |
en |
dc.identifier.epage |
4742 |
en |