HEAL DSpace

Numerical investigation of the cooling effectiveness of a droplet impinging on a heated surface

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Strotos, G en
dc.contributor.author Gavaises, M en
dc.contributor.author Theodorakakos, A en
dc.contributor.author Bergeles, G en
dc.date.accessioned 2014-03-01T01:28:53Z
dc.date.available 2014-03-01T01:28:53Z
dc.date.issued 2008 en
dc.identifier.issn 0017-9310 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19015
dc.subject Droplet deposition en
dc.subject Droplet impact en
dc.subject Heated wall en
dc.subject Vaporisation en
dc.subject VOF en
dc.subject.classification Thermodynamics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Air en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computer simulation en
dc.subject.other Cooling en
dc.subject.other Drop formation en
dc.subject.other Drops en
dc.subject.other Dynamics en
dc.subject.other Evaporation en
dc.subject.other Fluid dynamics en
dc.subject.other Fluid mechanics en
dc.subject.other Fluids en
dc.subject.other Forecasting en
dc.subject.other Heat conduction en
dc.subject.other Liquid phase epitaxy en
dc.subject.other Liquids en
dc.subject.other Moisture en
dc.subject.other Vapors en
dc.subject.other Walls (structural partitions) en
dc.subject.other Air flows en
dc.subject.other Atmospheric conditions en
dc.subject.other Cooling effectiveness en
dc.subject.other Coupled problems en
dc.subject.other Droplet deposition en
dc.subject.other Droplet impact en
dc.subject.other Droplet impinging en
dc.subject.other Droplet shape en
dc.subject.other Evaporation rate en
dc.subject.other Experimental data en
dc.subject.other Experimental observations en
dc.subject.other Fick's laws en
dc.subject.other Flow distributions en
dc.subject.other Flow mechanisms en
dc.subject.other Fluid flowing en
dc.subject.other Free surfaces en
dc.subject.other Heat conduction equation en
dc.subject.other Heat-transfer en
dc.subject.other Heated surfaces en
dc.subject.other Heated wall en
dc.subject.other Impact velocities en
dc.subject.other Initial stages en
dc.subject.other Liquid deposition en
dc.subject.other Liquid distributions en
dc.subject.other Liquid vaporization en
dc.subject.other Liquid-gas interfaces en
dc.subject.other Local temperatures en
dc.subject.other Model based en
dc.subject.other Model predictions en
dc.subject.other Non-equilibrium conditions en
dc.subject.other Numerica l results en
dc.subject.other Numerical investigations en
dc.subject.other Numerical simulations en
dc.subject.other Phase changes en
dc.subject.other Physical Properties en
dc.subject.other Solid walls en
dc.subject.other Test cases en
dc.subject.other Transitional period en
dc.subject.other Vaporisation en
dc.subject.other VOF en
dc.subject.other Water droplets en
dc.subject.other Phase interfaces en
dc.title Numerical investigation of the cooling effectiveness of a droplet impinging on a heated surface en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijheatmasstransfer.2008.02.036 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.036 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Computational fluid dynamics numerical simulations for 2.0 mm water droplets impinging normal onto a flat heated surface under atmospheric conditions are presented and validated against experimental data. The Coupled problem of liquid and air flow,. heat transfer with the solid wall together with the liquid vaporization process from the droplet's free surface is predicted using a VOF-based methodology accounting for phase-change. The cooling of the solid wall surface, initially at 120 degrees C, is predicted by solving simultaneously with the fluid flow and evaporation processes, the heat conduction equation within the solid wall. The range of impact velocities examined was between 1.3 and 3.0 m/s while focus is given to the process during the transitional period of the initial stages of impact prior to liquid deposition. The droplet's evaporation rate is predicted using a model based oil Fick's law and considers variable physical properties which are a function of the local temperature and composition. Additionally, a kinetic theory model was used to evaluate the importance of thermal non-equilibrium conditions at the liquid-gas interface and which have been found to be negligible fertile test cases investigated. The numerical results are compared against experimental data, showing satisfactory agreement. Model predictions for the droplet shape, temperature, flow distribution and vaporised liquid distribution reveal the detailed flow mechanisms that cannot be easily obtained from the experimental observations. (c) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Heat and Mass Transfer en
dc.identifier.doi 10.1016/j.ijheatmasstransfer.2008.02.036 en
dc.identifier.isi ISI:000259654600012 en
dc.identifier.volume 51 en
dc.identifier.issue 19-20 en
dc.identifier.spage 4728 en
dc.identifier.epage 4742 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής