HEAL DSpace

Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Strotos, G en
dc.contributor.author Gavaises, M en
dc.contributor.author Theodorakakos, A en
dc.contributor.author Bergeles, G en
dc.date.accessioned 2014-03-01T01:28:53Z
dc.date.available 2014-03-01T01:28:53Z
dc.date.issued 2008 en
dc.identifier.issn 0017-9310 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19016
dc.subject Droplet en
dc.subject Evaporation en
dc.subject Heated plate en
dc.subject VOF en
dc.subject.classification Thermodynamics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Computer simulation en
dc.subject.other Evaporation en
dc.subject.other Flow of fluids en
dc.subject.other Heat transfer en
dc.subject.other Mass transfer en
dc.subject.other Stainless steel en
dc.subject.other Droplet volume regression en
dc.subject.other Heated surfaces en
dc.subject.other VOF methodology en
dc.subject.other Drops en
dc.subject.other Computer simulation en
dc.subject.other Drops en
dc.subject.other Evaporation en
dc.subject.other Flow of fluids en
dc.subject.other Heat transfer en
dc.subject.other Mass transfer en
dc.subject.other Stainless steel en
dc.title Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijheatmasstransfer.2007.07.045 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.07.045 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 degrees and 60-100 degrees C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Heat and Mass Transfer en
dc.identifier.doi 10.1016/j.ijheatmasstransfer.2007.07.045 en
dc.identifier.isi ISI:000254725900003 en
dc.identifier.volume 51 en
dc.identifier.issue 7-8 en
dc.identifier.spage 1516 en
dc.identifier.epage 1529 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής