dc.contributor.author |
Strotos, G |
en |
dc.contributor.author |
Gavaises, M |
en |
dc.contributor.author |
Theodorakakos, A |
en |
dc.contributor.author |
Bergeles, G |
en |
dc.date.accessioned |
2014-03-01T01:28:53Z |
|
dc.date.available |
2014-03-01T01:28:53Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0017-9310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19016 |
|
dc.subject |
Droplet |
en |
dc.subject |
Evaporation |
en |
dc.subject |
Heated plate |
en |
dc.subject |
VOF |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Evaporation |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Stainless steel |
en |
dc.subject.other |
Droplet volume regression |
en |
dc.subject.other |
Heated surfaces |
en |
dc.subject.other |
VOF methodology |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Evaporation |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Stainless steel |
en |
dc.title |
Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijheatmasstransfer.2007.07.045 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.07.045 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 degrees and 60-100 degrees C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Heat and Mass Transfer |
en |
dc.identifier.doi |
10.1016/j.ijheatmasstransfer.2007.07.045 |
en |
dc.identifier.isi |
ISI:000254725900003 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
7-8 |
en |
dc.identifier.spage |
1516 |
en |
dc.identifier.epage |
1529 |
en |