HEAL DSpace

Numerical simulation of calendering viscoplastic fluids

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:28:53Z
dc.date.available 2014-03-01T01:28:53Z
dc.date.issued 2008 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19018
dc.subject Bingham plastics en
dc.subject Calendering en
dc.subject Papanastasiou model en
dc.subject Sheet thickness en
dc.subject Viscoplasticity en
dc.subject Yield stress en
dc.subject Yielded/unyielded regions en
dc.subject.classification Mechanics en
dc.subject.other Calendering en
dc.subject.other Calenders en
dc.subject.other Computer simulation en
dc.subject.other Crystallography en
dc.subject.other Materials science en
dc.subject.other Molecular beam epitaxy en
dc.subject.other Plasticity en
dc.subject.other Technology en
dc.subject.other Two dimensional en
dc.subject.other Viscoplasticity en
dc.subject.other Viscosity en
dc.subject.other Vortex flow en
dc.subject.other Yield stress en
dc.subject.other A posteriori en
dc.subject.other Bingham numbers en
dc.subject.other Bingham plastics en
dc.subject.other Deformation rates en
dc.subject.other Dimensionless form en
dc.subject.other Finite element method FEM en
dc.subject.other Finite thickness en
dc.subject.other Free surfaces en
dc.subject.other Herschel-Bulkley en
dc.subject.other Lubrication approximations en
dc.subject.other Newtonian en
dc.subject.other Newtonian viscous fluids en
dc.subject.other Numerica l results en
dc.subject.other Numerical simulations en
dc.subject.other Papanastasiou model en
dc.subject.other Shear-thinning en
dc.subject.other Sheet thickness en
dc.subject.other Steady-state conditions en
dc.subject.other Visco-plastic en
dc.subject.other Viscoplastic fluids en
dc.subject.other Vortex size en
dc.subject.other Yielded/unyielded regions en
dc.subject.other Finite element method en
dc.subject.other Calendering en
dc.subject.other Crystallography en
dc.subject.other Finite Element Analysis en
dc.subject.other Flow en
dc.subject.other Fluid Dynamics en
dc.subject.other Plasticity en
dc.subject.other Plastics en
dc.subject.other Simulation en
dc.subject.other Stresses en
dc.subject.other Viscosity en
dc.title Numerical simulation of calendering viscoplastic fluids en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2008.03.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2008.03.001 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Numerical simulations have been undertaken for the process of calendering viscoplastic sheets with a finite thickness. The finite element method (FEM) is used to provide numerical results for a fixed entry thickness (known attachment point) under two-dimensional steady-state conditions. The Herschel-Bulkley-Papanastasiou model of viscoplasticity is used, which is valid for all ranges of deformation rates. Part of the solution is finding the shape of the free surfaces of the entering and exiting sheet. Yielded/unyielded regions are found a posteriori for a range of the dimensionless yield stress or Bingham number (Bn) from the Newtonian viscous fluid (Bn = 0) to a highly viscoplastic one (Bn = 1000). The 2D FEM results show limited unyielded regions between the rolls, in disagreement with the lubrication approximation theory (LAT). which predicts erroneous extended unyielded regions. However, LAT is good at predicting the excess sheet thickness over the thickness at the nip (hence the detachment point), the pressure distribution and all engineering quantities of interest in calendering. For thick entering sheets, viscoplasticity (and also shear-thinning) leads to excess sheet thickness as the dimensionless Bingham number increases; it reduces the vortex size in the fluid bank, and gives virtually no swelling at the exit from the rolls. All engineering quantities, given in a dimensionless form, increase substantially with the departure from the Newtonian values. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2008.03.001 en
dc.identifier.isi ISI:000259658700001 en
dc.identifier.volume 154 en
dc.identifier.issue 2-3 en
dc.identifier.spage 77 en
dc.identifier.epage 88 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής