dc.contributor.author |
Jeremic, B |
en |
dc.contributor.author |
Cheng, Z |
en |
dc.contributor.author |
Taiebat, M |
en |
dc.contributor.author |
Dafalias, Y |
en |
dc.date.accessioned |
2014-03-01T01:28:54Z |
|
dc.date.available |
2014-03-01T01:28:54Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0363-9061 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19019 |
|
dc.subject |
Elasto-plastic |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Saturated porous solid-fluid simulations |
en |
dc.subject |
Soil dyanamics |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Elastoplasticity |
en |
dc.subject.other |
Flow interactions |
en |
dc.subject.other |
Models |
en |
dc.subject.other |
Plastics |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Advanced materials |
en |
dc.subject.other |
Dynamic interactions |
en |
dc.subject.other |
Dynamical behaviors |
en |
dc.subject.other |
Elastic-plastic |
en |
dc.subject.other |
Elasto-plastic |
en |
dc.subject.other |
Field equations |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
Fluid compressibility |
en |
dc.subject.other |
Fluid formulation |
en |
dc.subject.other |
Fully coupled |
en |
dc.subject.other |
Illustrative examples |
en |
dc.subject.other |
Implementation models |
en |
dc.subject.other |
Material modelling |
en |
dc.subject.other |
Modeling and simulation |
en |
dc.subject.other |
Numerical simulations |
en |
dc.subject.other |
Pore fluids |
en |
dc.subject.other |
Porous mediums |
en |
dc.subject.other |
Saturated porous medium |
en |
dc.subject.other |
Saturated porous solid-fluid simulations |
en |
dc.subject.other |
Saturated soils |
en |
dc.subject.other |
Seismic shaking |
en |
dc.subject.other |
Soil dyanamics |
en |
dc.subject.other |
Soil skeleton |
en |
dc.subject.other |
Structure interactions |
en |
dc.subject.other |
Validated methods |
en |
dc.subject.other |
Verification and validation |
en |
dc.subject.other |
Porous materials |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
damping |
en |
dc.subject.other |
dynamic response |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
model validation |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
porous medium |
en |
dc.subject.other |
saturated medium |
en |
dc.subject.other |
seismic response |
en |
dc.subject.other |
shaking table test |
en |
dc.subject.other |
soil dynamics |
en |
dc.subject.other |
soil-structure interaction |
en |
dc.subject.other |
stiffness |
en |
dc.title |
Numerical simulation of fully saturated porous materials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nag.687 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nag.687 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Fully coupled, porous solid-fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u - p - U formulation are used to simulate pore fluid and soil skeleton (elastic-plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil-foundation-structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non-saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic-plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright (C) 2008 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical and Analytical Methods in Geomechanics |
en |
dc.identifier.doi |
10.1002/nag.687 |
en |
dc.identifier.isi |
ISI:000259531900004 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
13 |
en |
dc.identifier.spage |
1635 |
en |
dc.identifier.epage |
1660 |
en |