HEAL DSpace

Numerical stability of fast computation algorithms of Zernike moments

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papakostas, GA en
dc.contributor.author Boutalis, YS en
dc.contributor.author Papaodysseus, CN en
dc.contributor.author Fragoulis, DK en
dc.date.accessioned 2014-03-01T01:28:54Z
dc.date.available 2014-03-01T01:28:54Z
dc.date.issued 2008 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19021
dc.subject Finite precision error en
dc.subject Numerical stability en
dc.subject Recursive algorithm en
dc.subject Zernike moments en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithms en
dc.subject.other Numerical methods en
dc.subject.other Robustness (control systems) en
dc.subject.other Finite precision error en
dc.subject.other Recursive algorithm en
dc.subject.other Zernike moments en
dc.subject.other Computational complexity en
dc.title Numerical stability of fast computation algorithms of Zernike moments en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2007.04.110 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2007.04.110 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A detailed, comparative study of the numerical stability of the recursive algorithms, widely used to calculate the Zernike moments of an image, is presented in this paper. While many papers, introducing fast algorithms for the computation of Zernike moments have been presented in the literature, there is not any work studying the numerical behaviour of these methods. These algorithms have been in the past compared to each other only according to their computational complexity, without been given the appropriate attention, as far as their numerical stability is concerned, being the most significant part of the algorithms' reliability. The present contribution attempts to fill this gap in the literature, since it mainly demonstrates that the usefulness of a recursive algorithm is defined not only by its low computational complexity, but most of all by its numerical robustness. This paper exhaustively compares some well known recursive algorithms for the computation of Zernike moments and sets the appropriate conditions in which each algorithm may fall in an unstable state. The experiments show that any of these algorithms can be unstable under some conditions and thus the need to develop more stable algorithms is of major importance. (C) 2007 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2007.04.110 en
dc.identifier.isi ISI:000253009100030 en
dc.identifier.volume 195 en
dc.identifier.issue 1 en
dc.identifier.spage 326 en
dc.identifier.epage 345 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record