dc.contributor.author |
Rassias, ThM |
en |
dc.contributor.author |
Kim, YH |
en |
dc.date.accessioned |
2014-03-01T01:28:54Z |
|
dc.date.available |
2014-03-01T01:28:54Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1331-4343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19026 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-48549092951&partnerID=40&md5=3ccc7b08125a8046c8e6fb779e526ed2 |
en |
dc.subject |
Arithmetic-geometric mean of Gauss |
en |
dc.subject |
Differential equation |
en |
dc.subject |
Monotonie function |
en |
dc.subject |
Partial derivative |
en |
dc.subject |
Symmetric mean |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
On certain mean value theorems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper we have obtained a symmetric integral mean M(a, b; P(r(n.k)). q) involving functions which a generalization of the arithmetic-geometric mean of Gauss. We have also proved some characterization of the symmetric mean values for the twice continuously differentiable function P. |
en |
heal.publisher |
ELEMENT |
en |
heal.journalName |
Mathematical Inequalities and Applications |
en |
dc.identifier.isi |
ISI:000257877600003 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
431 |
en |
dc.identifier.epage |
441 |
en |