dc.contributor.author |
Dodos, P |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:28:54Z |
|
dc.date.available |
2014-03-01T01:28:54Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0305-0041 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19027 |
|
dc.subject |
Cantor Set |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
On filling families of finite subsets of the Cantor set |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0305004108001096 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0305004108001096 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Let epsilon > 0 and F be a family of finite subsets of the Cantor set C. Following D.H. Fremlin, we say that T is e-filling over C if F is hereditary and for every F CC finite there exists G subset of F such that G epsilon T and vertical bar G vertical bar >= epsilon vertical bar F vertical bar. We show that if F is epsilon-filling over C and C-measurable in [C](<omega), then for every P subset of C perfect there exists Q subset of P perfect with [Q](<omega) subset of F. A similar result for weaker versions of density is also obtained. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Mathematical Proceedings of the Cambridge Philosophical Society |
en |
dc.identifier.doi |
10.1017/S0305004108001096 |
en |
dc.identifier.isi |
ISI:000257847400012 |
en |
dc.identifier.volume |
145 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
165 |
en |
dc.identifier.epage |
175 |
en |