HEAL DSpace

On the discrepancy measures for the optimal equal probability partitioning in bayesian multivariate micro-aggregation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokolakis, G en
dc.contributor.author Fouskakis, D en
dc.date.accessioned 2014-03-01T01:28:55Z
dc.date.available 2014-03-01T01:28:55Z
dc.date.issued 2008 en
dc.identifier.issn 0176-4268 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19034
dc.subject Asymptotic theory en
dc.subject Convex partition en
dc.subject Discrepancy measures en
dc.subject Identity protection en
dc.subject Multivariate micro-aggregation en
dc.subject Probabilistic distances en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Psychology, Mathematical en
dc.subject.other DISCLOSURE en
dc.title On the discrepancy measures for the optimal equal probability partitioning in bayesian multivariate micro-aggregation en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00357-008-9014-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00357-008-9014-8 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Data holders, such as statistical institutions and financial organizations, have a very serious and demanding task when producing data for official and public use. It's about controlling the risk of identity disclosure and protecting sensitive information when they communicate data-sets among themselves, to governmental agencies and to the public. One of the techniques applied is that of micro-aggregation. In a Bayesian setting, micro-aggregation can be viewed as the optimal partitioning of the original data-set based on the minimization of an appropriate measure of discrepancy, or distance, between two posterior distributions, one of which is conditional on the original data-set and the other conditional on the aggregated data-set. Assuming d-variate normal data-sets and using several measures of discrepancy, it is shown that the asymptotically optimal equal probability m-partition of ℝd, with m 1/d ε ℕ, is the convex one which is provided by hypercubes whose sides are formed by hyperplanes perpendicular to the canonical axes, no matter which discrepancy measure has been used. On the basis of the above result, a method that produces a sub-optimal partition with a very small computational cost is presented. © 2008 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Journal of Classification en
dc.identifier.doi 10.1007/s00357-008-9014-8 en
dc.identifier.isi ISI:000262413100007 en
dc.identifier.volume 25 en
dc.identifier.issue 2 en
dc.identifier.spage 209 en
dc.identifier.epage 224 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής