HEAL DSpace

On the role of inherent structures in glass-forming materials: I. The vitrification process

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsalikis, DG en
dc.contributor.author Lempesis, N en
dc.contributor.author Boulougouris, GC en
dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T01:28:57Z
dc.date.available 2014-03-01T01:28:57Z
dc.date.issued 2008 en
dc.identifier.issn 1520-6106 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19040
dc.subject.classification Chemistry, Physical en
dc.subject.other Cooling en
dc.subject.other Dynamics en
dc.subject.other Freezing en
dc.subject.other Glass en
dc.subject.other Model structures en
dc.subject.other Molecular dynamics en
dc.subject.other Poisson distribution en
dc.subject.other Poisson equation en
dc.subject.other Potential energy en
dc.subject.other Quantum chemistry en
dc.subject.other Rate constants en
dc.subject.other Supercooling en
dc.subject.other Vitrification en
dc.subject.other Atomistic molecular-dynamics en
dc.subject.other Coarse-grained en
dc.subject.other Cooling processes en
dc.subject.other Cooling rate en
dc.subject.other Cooling rates en
dc.subject.other First-order kinetic en
dc.subject.other Glass transition temperature Tg en
dc.subject.other Glass-forming materials en
dc.subject.other Highly nonlinear en
dc.subject.other Inherent structures en
dc.subject.other Lennard-jones en
dc.subject.other Mean-square displacement en
dc.subject.other Poisson process approximation en
dc.subject.other Poisson processes en
dc.subject.other Potential energy landscapes en
dc.subject.other Simplified models en
dc.subject.other Super-cooled liquids en
dc.subject.other Time scaling en
dc.subject.other Two-component en
dc.subject.other Vitrification process en
dc.subject.other Glass transition en
dc.title On the role of inherent structures in glass-forming materials: I. The vitrification process en
heal.type journalArticle en
heal.identifier.primary 10.1021/jp801296k en
heal.identifier.secondary http://dx.doi.org/10.1021/jp801296k en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this work, we investigate the role of inherent structures in the vitrification process of glass-forming materials by using a two-component Lennard-Jones mixture. We start with a simplified model that describes the dynamics of the atomistic system as a Poisson process consisting of a series of transitions from one potential energy minimum (inherent structure) to another, the rate of individual transitions being described by a first-order kinetic law. We investigate the validity of this model by comparing the mean square displacement resulting from atomistic molecular dynamics (MD) trajectories with the corresponding mean square displacement based on inherent structures. Furthermore, in the case of vitrification via stepwise cooling, we identify the role of the potential energy landscape in determining the properties of the resulting glass. Interestingly, the cooling rate is not sufficient to define the resulting glass in a stepwise cooling process, because the time spent by the system at different temperatures (length of the steps) has a highly nonlinear impact on the properties of the resulting glass. In contrast to previous investigations of supercooled liquids, we focus on a range of temperatures close to and below the glass transition temperature, where the use of MD is incapable of producing equilibrated samples of the metastable supercooled state. Our aim is to develop a methodology that enables mapping the dynamics under these conditions to a coarse-grained first-order kinetic model based on the Poisson process approximation. This model can be used in order to extend our dynamical sampling ability to much broader time scales and therefore allow us to create computer glasses with cooling rates closer to those used experimentally. In a continuation to this work,1 we provide the mathematical formulation for lifting the coarse-grained Poisson process model and reproducing the full dynamics of the atomistic system. © 2008 American Chemical Society. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Journal of Physical Chemistry B en
dc.identifier.doi 10.1021/jp801296k en
dc.identifier.isi ISI:000258633400029 en
dc.identifier.volume 112 en
dc.identifier.issue 34 en
dc.identifier.spage 10619 en
dc.identifier.epage 10627 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής