dc.contributor.author |
Chu, H-Y |
en |
dc.contributor.author |
Kang, DS |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:28:57Z |
|
dc.date.available |
2014-03-01T01:28:57Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1370-1444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19042 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-42349100907&partnerID=40&md5=382233909e524db9ed7f15759cb9914c |
en |
dc.subject |
Hyers-ulam-rassias stability |
en |
dc.subject |
Quadratic mapping |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ULAM-RASSIAS STABILITY |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
MAPPINGS |
en |
dc.title |
On the stability of a mixed n-dimensional quadratic functional equation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, we investigate the modified Hyers-Ulam stability of a mixed n-dimensional quadratic functional equation in Banach spaces and also Banach modules over a Banach algebra and a C*-algebra. Finally, we study the stability using the alternative fixed point of the functional equation in Banach spaces: (n-2)C(m-2)f(Sigma(n)(j=1)x(j)) + C-n-2(m-1) Sigma(n)(i=1) f(x(i)) = Sigma(1 <= iI<...<im <= n) f(x(iI) + ... + x(im)), for all x(j) (j = 1, ..., n) where n >= 3 is an integer number and 2 <= Ta <= n - 1. |
en |
heal.publisher |
BELGIAN MATHEMATICAL SOC TRIOMPHE |
en |
heal.journalName |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
en |
dc.identifier.isi |
ISI:000255315100002 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
9 |
en |
dc.identifier.epage |
24 |
en |