HEAL DSpace

On the subspaces of JF and JT with non-separable dual

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Apatsidis, D en
dc.contributor.author Argyros, SA en
dc.contributor.author Kanellopoulos, V en
dc.date.accessioned 2014-03-01T01:28:57Z
dc.date.available 2014-03-01T01:28:57Z
dc.date.issued 2008 en
dc.identifier.issn 0022-1236 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19043
dc.subject Banach spaces with non-separable dual en
dc.subject James Function space en
dc.subject James Tree space en
dc.subject.classification Mathematics en
dc.subject.other BANACH-SPACE en
dc.subject.other L1 en
dc.title On the subspaces of JF and JT with non-separable dual en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jfa.2007.11.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jfa.2007.11.011 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract It is proved that every subspace of James Tree space (JT) with non-separable dual contains an isomorph of James Tree complemented in JT. This yields that every complemented subspace of JT with non-separable dual is isomorphic to JT. A new JT like space denoted as TF is defined. It is shown that every subspace of James Function space (JF) with non-separable dual contains an isomorph of TF. The later yields that every subspace of JF with non-separable dual contains isomorphs of c(0) and l(p) for 2 <= p < infinity. The analogues of the above results for bounded linear operators are also proved. (C) 2007 Elsevier Inc. All rights reserved. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName Journal of Functional Analysis en
dc.identifier.doi 10.1016/j.jfa.2007.11.011 en
dc.identifier.isi ISI:000252998200003 en
dc.identifier.volume 254 en
dc.identifier.issue 3 en
dc.identifier.spage 632 en
dc.identifier.epage 674 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής