dc.contributor.author |
Apatsidis, D |
en |
dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:28:57Z |
|
dc.date.available |
2014-03-01T01:28:57Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0022-1236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19043 |
|
dc.subject |
Banach spaces with non-separable dual |
en |
dc.subject |
James Function space |
en |
dc.subject |
James Tree space |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACE |
en |
dc.subject.other |
L1 |
en |
dc.title |
On the subspaces of JF and JT with non-separable dual |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jfa.2007.11.011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jfa.2007.11.011 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
It is proved that every subspace of James Tree space (JT) with non-separable dual contains an isomorph of James Tree complemented in JT. This yields that every complemented subspace of JT with non-separable dual is isomorphic to JT. A new JT like space denoted as TF is defined. It is shown that every subspace of James Function space (JF) with non-separable dual contains an isomorph of TF. The later yields that every subspace of JF with non-separable dual contains isomorphs of c(0) and l(p) for 2 <= p < infinity. The analogues of the above results for bounded linear operators are also proved. (C) 2007 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Functional Analysis |
en |
dc.identifier.doi |
10.1016/j.jfa.2007.11.011 |
en |
dc.identifier.isi |
ISI:000252998200003 |
en |
dc.identifier.volume |
254 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
632 |
en |
dc.identifier.epage |
674 |
en |