HEAL DSpace

Optimization of energy systems based on Evolutionary and Social metaphors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimopoulos, GG en
dc.contributor.author Frangopoulos, CA en
dc.date.accessioned 2014-03-01T01:28:58Z
dc.date.available 2014-03-01T01:28:58Z
dc.date.issued 2008 en
dc.identifier.issn 0360-5442 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19050
dc.subject Energy systems en
dc.subject Evolutionary programming en
dc.subject Particle swarm optimization en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.other Constraint theory en
dc.subject.other Evolutionary algorithms en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Energy systems en
dc.subject.other Particle swarm optimization en
dc.subject.other Energy management en
dc.subject.other Constraint theory en
dc.subject.other Energy management en
dc.subject.other Evolutionary algorithms en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other accuracy assessment en
dc.subject.other engineering en
dc.subject.other genetic algorithm en
dc.subject.other methodology en
dc.subject.other optimization en
dc.title Optimization of energy systems based on Evolutionary and Social metaphors en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.energy.2007.09.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.energy.2007.09.002 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Optimization problems that arise in energy systems design often have several features that hinder the use of many optimization techniques. These optimization problems have non-continuous mixed variable definition domains, are heavily constrained, are multimodal (i.e. have many local optima) and, foremost, the functions used to define the engineering optimization problem are often computationally intensive. Three methods are tested here: (a) a Struggle Genetic Algorithm (StrGA), (b) a Particle Swarm Optimization Algorithm (PSOA), and (c) a PSOA with Struggle Selection (PSOStr). The last is a hybrid of the evolutionary StrGA and the socially inspired PSOA. They are tested in four purely mathematical and three energy systems thermoeconomic optimization problems. All of the methods solved successfully all the problems. The PSOStr, however, outperformed the other methods in terms of both solution accuracy and computational Cost (i.e. function evaluations). (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Energy en
dc.identifier.doi 10.1016/j.energy.2007.09.002 en
dc.identifier.isi ISI:000253574700009 en
dc.identifier.volume 33 en
dc.identifier.issue 2 en
dc.identifier.spage 171 en
dc.identifier.epage 179 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής