dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:29:01Z |
|
dc.date.available |
2014-03-01T01:29:01Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1385-1292 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19086 |
|
dc.subject |
(S)+-operator |
en |
dc.subject |
Degree theory |
en |
dc.subject |
Picone's identity |
en |
dc.subject |
Positive solution |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DIMENSIONAL P-LAPLACIAN |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.title |
Positive solutions for nonlinear periodic problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11117-008-2055-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11117-008-2055-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a nonsmooth potential. Using the degree map for multivalued perturbations of (S)+-operators and the spectrum of a weighted eigenvalue problem for the scalar periodic p-Laplacian, we prove the existence of a strictly positive solution. © 2008 Springer Science + Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Positivity |
en |
dc.identifier.doi |
10.1007/s11117-008-2055-8 |
en |
dc.identifier.isi |
ISI:000260220600012 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
733 |
en |
dc.identifier.epage |
750 |
en |