dc.contributor.author |
Denkowski, Z |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:29:01Z |
|
dc.date.available |
2014-03-01T01:29:01Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0927-6947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19087 |
|
dc.subject |
Fixed point index |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Nonsmooth potential |
en |
dc.subject |
Nonuniform nonresonance |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject |
Weighted eigenvalue problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
EIGENVALUES |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Positive solutions for nonlinear periodic problems with the scalar p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11228-007-0059-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11228-007-0059-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We study the existence of positive solutions for a nonlinear periodic problem driven by the scalar p-Laplacian and having a nonsmooth potential. We impose a nonuniform nonresonance condition at +∈∞ and a uniform nonresonance condition at 0∈+∈. Using degree theoretic argument based on a fixed point index for multifunctions, we prove the existence of a strict positive solution. © 2007 Springer Science + Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Set-Valued Analysis |
en |
dc.identifier.doi |
10.1007/s11228-007-0059-3 |
en |
dc.identifier.isi |
ISI:000261792300002 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
5-6 |
en |
dc.identifier.spage |
539 |
en |
dc.identifier.epage |
561 |
en |