HEAL DSpace

Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zervas, PL en
dc.contributor.author Sarimveis, H en
dc.contributor.author Palyvos, JA en
dc.contributor.author Markatos, NCG en
dc.date.accessioned 2014-03-01T01:29:03Z
dc.date.available 2014-03-01T01:29:03Z
dc.date.issued 2008 en
dc.identifier.issn 0960-1481 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19092
dc.subject Global solar irradiance en
dc.subject Neural networks en
dc.subject Prediction model en
dc.subject.classification Energy & Fuels en
dc.subject.other Correlation methods en
dc.subject.other Database systems en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Global solar irradiance en
dc.subject.other Prediction model en
dc.subject.other Solar energy en
dc.subject.other Correlation methods en
dc.subject.other Database systems en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Solar energy en
dc.subject.other artificial neural network en
dc.subject.other climate prediction en
dc.subject.other database en
dc.subject.other Gaussian method en
dc.subject.other irradiance en
dc.subject.other meteorology en
dc.subject.other model validation en
dc.subject.other numerical model en
dc.subject.other solar radiation en
dc.subject.other weather en
dc.title Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.renene.2007.09.020 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.renene.2007.09.020 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this study, a prediction model of global solar irradiance distribution on horizontal surfaces has been developed. The methodology is based on neural-network techniques and has been applied to the meteorological database of NTUA, Zografou Campus, Athens (37 degrees 58'26 '' N, 23 degrees 47'16 '' E). The investigation of the correlation between weather conditions, duration of daylight and the representative peak value of a Gaussian-type function plays an essential role in the development of the model. The weather conditions are categorized into six different states, whereas the daylight duration is obtained by familiar equations. Thereafter, a correction methodology for the Gaussian-type function-which stands for all six different states-is applied. Finally, the reliability of the developed model is investigated through a suitable validation procedure. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Renewable Energy en
dc.identifier.doi 10.1016/j.renene.2007.09.020 en
dc.identifier.isi ISI:000255992300008 en
dc.identifier.volume 33 en
dc.identifier.issue 8 en
dc.identifier.spage 1796 en
dc.identifier.epage 1803 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής