dc.contributor.author |
Lampis, M |
en |
dc.contributor.author |
Ginis, KG |
en |
dc.contributor.author |
Papakyriakou, MA |
en |
dc.contributor.author |
Papaspyrou, NS |
en |
dc.date.accessioned |
2014-03-01T01:29:04Z |
|
dc.date.available |
2014-03-01T01:29:04Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
15710661 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19109 |
|
dc.subject |
denotational semantics |
en |
dc.subject |
Functional quantum programming language |
en |
dc.subject |
type system |
en |
dc.subject.other |
Computer programming languages |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Functional programming |
en |
dc.subject.other |
Information theory |
en |
dc.subject.other |
Java programming language |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Program interpreters |
en |
dc.subject.other |
Quantum optics |
en |
dc.subject.other |
Quantum theory |
en |
dc.subject.other |
Control constructs |
en |
dc.subject.other |
denotational semantics |
en |
dc.subject.other |
density matrices |
en |
dc.subject.other |
Elsevier (CO) |
en |
dc.subject.other |
Haskell |
en |
dc.subject.other |
Higher-order functions |
en |
dc.subject.other |
Programming language |
en |
dc.subject.other |
quantum algorithms |
en |
dc.subject.other |
Quantum data |
en |
dc.subject.other |
Quantum states |
en |
dc.subject.other |
Type systems |
en |
dc.subject.other |
Unitary transformations |
en |
dc.subject.other |
Semantics |
en |
dc.title |
Quantum Data and Control Made Easier |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.entcs.2008.04.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.entcs.2008.04.020 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper we define nQML, a functional quantum programming language that follows the ""quantum data and control"" paradigm. In comparison to Altenkirch and Grattage's QML, the control constructs of nQML are simpler and can implement quantum algorithms more directly and naturally. We avoid the unnecessary complexities of a linear type system by using types that carry the address of qubits in the quantum state. We provide a denotational semantics over density matrices and unitary transformations, inspired by Selinger's semantics for QPL. Our semantics leads naturally to an interpreter for nQML, written in Haskell. We also explore the extension of nQML with polymorphic higher-order functions. © 2008 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Electronic Notes in Theoretical Computer Science |
en |
dc.identifier.doi |
10.1016/j.entcs.2008.04.020 |
en |
dc.identifier.volume |
210 |
en |
dc.identifier.issue |
C |
en |
dc.identifier.spage |
85 |
en |
dc.identifier.epage |
105 |
en |