dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Ram, AK |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:29:04Z |
|
dc.date.available |
2014-03-01T01:29:04Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1070-664X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19110 |
|
dc.subject |
electron transport theory |
en |
dc.subject |
perturbation theory |
en |
dc.subject |
plasma interactions |
en |
dc.subject |
plasma magnetohydrodynamics |
en |
dc.subject |
plasma radiofrequency heating |
en |
dc.subject |
plasma toroidal confinement |
en |
dc.subject |
plasma transport processes |
en |
dc.subject |
tearing instability |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Atoms |
en |
dc.subject.other |
Cyclotrons |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Flow interactions |
en |
dc.subject.other |
Fusion reactors |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Magnetic flux |
en |
dc.subject.other |
Magnetic materials |
en |
dc.subject.other |
Magnetism |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Orbits |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Phase equilibria |
en |
dc.subject.other |
Phase space methods |
en |
dc.subject.other |
Plasma diagnostics |
en |
dc.subject.other |
Plasma simulation |
en |
dc.subject.other |
Plasmas |
en |
dc.subject.other |
Radio |
en |
dc.subject.other |
Radio waves |
en |
dc.subject.other |
Action variables |
en |
dc.subject.other |
Angle variables |
en |
dc.subject.other |
Axisymmetric |
en |
dc.subject.other |
Chaotic orbits |
en |
dc.subject.other |
Collision operators |
en |
dc.subject.other |
Computational studies |
en |
dc.subject.other |
Configuration spaces |
en |
dc.subject.other |
Confined fusions |
en |
dc.subject.other |
Corresponding relations |
en |
dc.subject.other |
Current generations |
en |
dc.subject.other |
Current profiles |
en |
dc.subject.other |
Diffusion equations |
en |
dc.subject.other |
Diffusion operators |
en |
dc.subject.other |
Electron cyclotrons |
en |
dc.subject.other |
Electron diffusions |
en |
dc.subject.other |
Electron distributions |
en |
dc.subject.other |
Electron dynamics |
en |
dc.subject.other |
Electron motions |
en |
dc.subject.other |
Electron transports |
en |
dc.subject.other |
Field perturbations |
en |
dc.subject.other |
Flux coordinates |
en |
dc.subject.other |
Localized beams |
en |
dc.subject.other |
Magnetic islands |
en |
dc.subject.other |
Magnetic perturbations |
en |
dc.subject.other |
Markovian |
en |
dc.subject.other |
Momentum spaces |
en |
dc.subject.other |
Neoclassical tearing modes |
en |
dc.subject.other |
Nonresonant |
en |
dc.subject.other |
Numerical codes |
en |
dc.subject.other |
Phase spaces |
en |
dc.subject.other |
Plasma currents |
en |
dc.subject.other |
Plasma equilibriums |
en |
dc.subject.other |
Quasilinear |
en |
dc.subject.other |
Quasilinear diffusions |
en |
dc.subject.other |
Quasilinear theories |
en |
dc.subject.other |
Radial directions |
en |
dc.subject.other |
Radio frequency waves |
en |
dc.subject.other |
Regular orbits |
en |
dc.subject.other |
Rf waves |
en |
dc.subject.other |
Spatial diffusions |
en |
dc.subject.other |
Spatial evolutions |
en |
dc.subject.other |
Spatial profiles |
en |
dc.subject.other |
Steady states |
en |
dc.subject.other |
Time dependents |
en |
dc.subject.other |
Toroidal plasmas |
en |
dc.subject.other |
Electrons |
en |
dc.title |
Quasilinear theory of electron transport by radio frequency waves and nonaxisymmetric perturbations in toroidal plasmas |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3029736 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3029736 |
en |
heal.identifier.secondary |
122501 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The use of radio frequency waves to generate plasma current and to modify the current profile in magnetically confined fusion devices is well documented. The current is generated by the interaction of electrons with an appropriately tailored spectrum of externally launched rf waves. In theoretical and computational studies, the interaction of rf waves with electrons is represented by a quasilinear diffusion operator. The balance, in steady state, between the quasilinear operator and the collision operator gives the modified electron distribution from which the generated current can be calculated. In this paper the relativistic operator for momentum and spatial diffusion of electrons due to rf waves and nonaxisymmetric magnetic field perturbations is derived. Relativistic treatment is necessary for the interaction of electrons with waves in the electron cyclotron range of frequencies. The spatial profile of the rf waves is treated in general so that diffusion due to localized beams is included. The nonaxisymmetric magnetic field perturbations can be due to magnetic islands as in neoclassical tearing modes. The plasma equilibrium is expressed in terms of the magnetic flux coordinates of an axisymmetric toroidal plasma. The electron motion is described by guiding center coordinates using the action-angle variables of motion in an axisymmetric toroidal equilibrium. The Lie perturbation technique is used to derive a diffusion operator which is nonsingular and time dependent. The resulting action diffusion equation describes resonant and nonresonant momentum and spatial diffusion. Momentum space diffusion leads to current generation in the plasma and spatial diffusion describes the effect of rf waves and magnetic perturbations on spatial evolution of the current profile. Depending on the symmetry of the equilibrium and the corresponding relation of the action variables to the configuration space variables, in addition to diffusion along the radial direction, poloidal, and toroidal electron diffusion, is also described. In deriving the diffusion operator, no statistical assumption, such as, the Markovian assumption, for the underlying electron dynamics, is imposed. Consequently, the operator is time dependent and valid for a dynamical phase space that is a mix of correlated regular orbits and decorrelated chaotic orbits. The diffusion operator is expressed in a form suitable for implementation in a numerical code. © 2008 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Physics of Plasmas |
en |
dc.identifier.doi |
10.1063/1.3029736 |
en |
dc.identifier.isi |
ISI:000262228500024 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
12 |
en |