HEAL DSpace

Robust fuzzy clustering using mixtures of Student's-t distributions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, S en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T01:29:06Z
dc.date.available 2014-03-01T01:29:06Z
dc.date.issued 2008 en
dc.identifier.issn 0167-8655 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19129
dc.subject Finite mixture models en
dc.subject Fuzzy c-means en
dc.subject Fuzzy clustering en
dc.subject Student's-t distributions en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Algorithms en
dc.subject.other Arsenic compounds en
dc.subject.other Boolean functions en
dc.subject.other Clustering algorithms en
dc.subject.other Flow of solids en
dc.subject.other Fuzzy logic en
dc.subject.other Fuzzy rules en
dc.subject.other Fuzzy sets en
dc.subject.other Fuzzy systems en
dc.subject.other Image segmentation en
dc.subject.other Mixtures en
dc.subject.other Probability distributions en
dc.subject.other Students en
dc.subject.other Clustering performance en
dc.subject.other Clustering procedures en
dc.subject.other Computational loads en
dc.subject.other Finite mixtures en
dc.subject.other Fuzzy c means (FCM) algorithms en
dc.subject.other Fuzzy Clustering algorithms en
dc.subject.other Robust fuzzy clustering en
dc.subject.other T distributions en
dc.subject.other Fuzzy clustering en
dc.title Robust fuzzy clustering using mixtures of Student's-t distributions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.patrec.2008.06.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.patrec.2008.06.013 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper, we propose a robust fuzzy clustering algorithm, based on a fuzzy treatment of finite mixtures of multivariate Student's-t distributions, using the fuzzy c-means (FCM) algorithm. As we experimentally demonstrate, the proposed algorithm, by incorporating the assumptions about the probabilistic nature of the clusters being dirived into the fuzzy clustering procedure, allows for the exploitation of the hard tails of the multivariate Student's-t distribution, to obtain a robust to outliers fuzzy clustering algorithm, offering increased clustering performance comparing to existing FCM-based algorithms. Our experimental results prove that the proposed fuzzy treatment of finite mixtures of Student's-t distributions is more effective comparing to their statistical treatments using EM-type algorithms, while imposing comparable computational loads. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Pattern Recognition Letters en
dc.identifier.doi 10.1016/j.patrec.2008.06.013 en
dc.identifier.isi ISI:000258817900019 en
dc.identifier.volume 29 en
dc.identifier.issue 13 en
dc.identifier.spage 1901 en
dc.identifier.epage 1905 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής