dc.contributor.author |
Taiebat, M |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.date.accessioned |
2014-03-01T01:29:06Z |
|
dc.date.available |
2014-03-01T01:29:06Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0363-9061 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19130 |
|
dc.subject |
Anisotropy |
en |
dc.subject |
Constitutive relations |
en |
dc.subject |
Critical state |
en |
dc.subject |
Plasticity |
en |
dc.subject |
Sand |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Constitutive models |
en |
dc.subject.other |
Critical current density (superconductivity) |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Foundations |
en |
dc.subject.other |
Geologic models |
en |
dc.subject.other |
Hardening |
en |
dc.subject.other |
Loading |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Plastic deformation |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Plastics |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Speed |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Strain rate |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Analytical description |
en |
dc.subject.other |
Bounding surface plasticity |
en |
dc.subject.other |
Calibration procedures |
en |
dc.subject.other |
Confining pressures |
en |
dc.subject.other |
Constant stress ratio |
en |
dc.subject.other |
Constant stresses |
en |
dc.subject.other |
Critical state soil mechanics |
en |
dc.subject.other |
Elastic response] |
en |
dc.subject.other |
Isotropic hardenings |
en |
dc.subject.other |
Loading conditions |
en |
dc.subject.other |
Model constants |
en |
dc.subject.other |
Model formulation |
en |
dc.subject.other |
Multiaxial |
en |
dc.subject.other |
Plastic strain rate |
en |
dc.subject.other |
Plastic straining |
en |
dc.subject.other |
Plasticity modelling |
en |
dc.subject.other |
Predictive capabilities |
en |
dc.subject.other |
Rotational hardening |
en |
dc.subject.other |
Stress ratios |
en |
dc.subject.other |
Triaxial (IGC: D7) |
en |
dc.subject.other |
Triaxial stresses |
en |
dc.subject.other |
Undrained behavior |
en |
dc.subject.other |
Various densities |
en |
dc.subject.other |
Yield surfaces |
en |
dc.subject.other |
Plastic parts |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
calibration |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
constitutive equation |
en |
dc.subject.other |
loading |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
plastic deformation |
en |
dc.subject.other |
plasticity |
en |
dc.subject.other |
sandy soil |
en |
dc.subject.other |
soil mechanics |
en |
dc.subject.other |
soil test |
en |
dc.subject.other |
stress analysis |
en |
dc.subject.other |
triaxial test |
en |
dc.title |
SANISAND: Simple anisotropic sand plasticity model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nag.651 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nag.651 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
SANISAND is the name used for a family of simple anisotropic sand constitutive models developed over the past few years within the framework of critical state soil mechanics and bounding surface plasticity. The existing SANISAND models use a narrow open cone-type yield surface with apex at the origin obeying rotational hardening, which implies that only changes of the stress ratio can cause plastic deformations, while constant stress-ratio loading induces only elastic response. In order to circumvent this limitation, the present member of the SANISAND family introduces a modified eight-curve equation as the analytical description of a narrow but closed cone-type yield surface that obeys rotational and isotropic hardening. This modification enables the prediction of plastic strains during any type of constant stress-ratio loading, a feature lacking from the previous SANISAND models, without losing their well-established predictive capability for all other loading conditions including the cyclic. In the process the plausible assumption is made that the plastic strain rate decomposes in two parts, one due to the change of stress ratio and a second due to loading under constant stress ratio, with isotropic hardening depending on the volumetric component of the latter part only. The model formulation is presented firstly in the triaxial stress space and subsequently its multiaxial generalization is developed following systematically the steps of the triaxial one. A detailed calibration procedure for the model constants is presented, while successful simulation of both drained and undrained behavior of sands under constant and variable stress-ratio loadings at various densities and confining pressures is obtained by the model. Copyright (C) 2007 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical and Analytical Methods in Geomechanics |
en |
dc.identifier.doi |
10.1002/nag.651 |
en |
dc.identifier.isi |
ISI:000256817600003 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
915 |
en |
dc.identifier.epage |
948 |
en |