HEAL DSpace

SANISAND: Simple anisotropic sand plasticity model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Taiebat, M en
dc.contributor.author Dafalias, YF en
dc.date.accessioned 2014-03-01T01:29:06Z
dc.date.available 2014-03-01T01:29:06Z
dc.date.issued 2008 en
dc.identifier.issn 0363-9061 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19130
dc.subject Anisotropy en
dc.subject Constitutive relations en
dc.subject Critical state en
dc.subject Plasticity en
dc.subject Sand en
dc.subject.classification Engineering, Geological en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Anisotropy en
dc.subject.other Constitutive models en
dc.subject.other Critical current density (superconductivity) en
dc.subject.other Elasticity en
dc.subject.other Foundations en
dc.subject.other Geologic models en
dc.subject.other Hardening en
dc.subject.other Loading en
dc.subject.other Mechanics en
dc.subject.other Plastic deformation en
dc.subject.other Plasticity en
dc.subject.other Plastics en
dc.subject.other Soil mechanics en
dc.subject.other Speed en
dc.subject.other Strain en
dc.subject.other Strain rate en
dc.subject.other Stresses en
dc.subject.other Analytical description en
dc.subject.other Bounding surface plasticity en
dc.subject.other Calibration procedures en
dc.subject.other Confining pressures en
dc.subject.other Constant stress ratio en
dc.subject.other Constant stresses en
dc.subject.other Critical state soil mechanics en
dc.subject.other Elastic response] en
dc.subject.other Isotropic hardenings en
dc.subject.other Loading conditions en
dc.subject.other Model constants en
dc.subject.other Model formulation en
dc.subject.other Multiaxial en
dc.subject.other Plastic strain rate en
dc.subject.other Plastic straining en
dc.subject.other Plasticity modelling en
dc.subject.other Predictive capabilities en
dc.subject.other Rotational hardening en
dc.subject.other Stress ratios en
dc.subject.other Triaxial (IGC: D7) en
dc.subject.other Triaxial stresses en
dc.subject.other Undrained behavior en
dc.subject.other Various densities en
dc.subject.other Yield surfaces en
dc.subject.other Plastic parts en
dc.subject.other anisotropy en
dc.subject.other calibration en
dc.subject.other computer simulation en
dc.subject.other constitutive equation en
dc.subject.other loading en
dc.subject.other modeling en
dc.subject.other plastic deformation en
dc.subject.other plasticity en
dc.subject.other sandy soil en
dc.subject.other soil mechanics en
dc.subject.other soil test en
dc.subject.other stress analysis en
dc.subject.other triaxial test en
dc.title SANISAND: Simple anisotropic sand plasticity model en
heal.type journalArticle en
heal.identifier.primary 10.1002/nag.651 en
heal.identifier.secondary http://dx.doi.org/10.1002/nag.651 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract SANISAND is the name used for a family of simple anisotropic sand constitutive models developed over the past few years within the framework of critical state soil mechanics and bounding surface plasticity. The existing SANISAND models use a narrow open cone-type yield surface with apex at the origin obeying rotational hardening, which implies that only changes of the stress ratio can cause plastic deformations, while constant stress-ratio loading induces only elastic response. In order to circumvent this limitation, the present member of the SANISAND family introduces a modified eight-curve equation as the analytical description of a narrow but closed cone-type yield surface that obeys rotational and isotropic hardening. This modification enables the prediction of plastic strains during any type of constant stress-ratio loading, a feature lacking from the previous SANISAND models, without losing their well-established predictive capability for all other loading conditions including the cyclic. In the process the plausible assumption is made that the plastic strain rate decomposes in two parts, one due to the change of stress ratio and a second due to loading under constant stress ratio, with isotropic hardening depending on the volumetric component of the latter part only. The model formulation is presented firstly in the triaxial stress space and subsequently its multiaxial generalization is developed following systematically the steps of the triaxial one. A detailed calibration procedure for the model constants is presented, while successful simulation of both drained and undrained behavior of sands under constant and variable stress-ratio loadings at various densities and confining pressures is obtained by the model. Copyright (C) 2007 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical and Analytical Methods in Geomechanics en
dc.identifier.doi 10.1002/nag.651 en
dc.identifier.isi ISI:000256817600003 en
dc.identifier.volume 32 en
dc.identifier.issue 8 en
dc.identifier.spage 915 en
dc.identifier.epage 948 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής