HEAL DSpace

Shear deformation effect in non-linear analysis of composite beams of variable cross section

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Panagos, DG en
dc.date.accessioned 2014-03-01T01:29:07Z
dc.date.available 2014-03-01T01:29:07Z
dc.date.issued 2008 en
dc.identifier.issn 0020-7462 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19140
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Non-linear analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject Variable cross section en
dc.subject.classification Mechanics en
dc.subject.other Binary codes en
dc.subject.other Boundary conditions en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Composite beams and girders en
dc.subject.other Deformation en
dc.subject.other Differential equations en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electromagnetic prospecting en
dc.subject.other Function evaluation en
dc.subject.other Initial value problems en
dc.subject.other Loading en
dc.subject.other Mathematical transformations en
dc.subject.other Photoacoustic effect en
dc.subject.other Poisson ratio en
dc.subject.other Shear deformation en
dc.subject.other Shearing machines en
dc.subject.other Analog equation method (AEM) en
dc.subject.other Applied (CO) en
dc.subject.other Axial displacements en
dc.subject.other Axial loadings en
dc.subject.other Boundary elements en
dc.subject.other Boundary integration en
dc.subject.other boundary values en
dc.subject.other Composite beams en
dc.subject.other cross sectioning en
dc.subject.other Elsevier (CO) en
dc.subject.other Finite numbers en
dc.subject.other General boundary conditions en
dc.subject.other Iterative processing en
dc.subject.other Large deflections en
dc.subject.other Non-linear analysis en
dc.subject.other Non-linear equations en
dc.subject.other Numerical examples en
dc.subject.other Poisson en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Shear loadings en
dc.subject.other Shear modulus en
dc.subject.other Stress functions en
dc.subject.other Timoshenko beams en
dc.subject.other Transverse displacements en
dc.subject.other Twisting moments en
dc.subject.other Variable cross section en
dc.subject.other Linear equations en
dc.title Shear deformation effect in non-linear analysis of composite beams of variable cross section en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijnonlinmec.2008.03.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijnonlinmec.2008.03.005 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper the non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large deflections under general boundary conditions is presented employing the analog equation method (AEM), a BEM-based method. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of non-linear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy, the range of applications of the developed method and the influence of the shear deformation effect. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Non-Linear Mechanics en
dc.identifier.doi 10.1016/j.ijnonlinmec.2008.03.005 en
dc.identifier.isi ISI:000258350300010 en
dc.identifier.volume 43 en
dc.identifier.issue 7 en
dc.identifier.spage 660 en
dc.identifier.epage 682 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής