dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Panagos, DG |
en |
dc.date.accessioned |
2014-03-01T01:29:07Z |
|
dc.date.available |
2014-03-01T01:29:07Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19140 |
|
dc.subject |
Beam |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Non-linear analysis |
en |
dc.subject |
Shear center |
en |
dc.subject |
Shear deformation coefficients |
en |
dc.subject |
Transverse shear stresses |
en |
dc.subject |
Variable cross section |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Binary codes |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Composite beams and girders |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Electromagnetic prospecting |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Loading |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Photoacoustic effect |
en |
dc.subject.other |
Poisson ratio |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Shearing machines |
en |
dc.subject.other |
Analog equation method (AEM) |
en |
dc.subject.other |
Applied (CO) |
en |
dc.subject.other |
Axial displacements |
en |
dc.subject.other |
Axial loadings |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Boundary integration |
en |
dc.subject.other |
boundary values |
en |
dc.subject.other |
Composite beams |
en |
dc.subject.other |
cross sectioning |
en |
dc.subject.other |
Elsevier (CO) |
en |
dc.subject.other |
Finite numbers |
en |
dc.subject.other |
General boundary conditions |
en |
dc.subject.other |
Iterative processing |
en |
dc.subject.other |
Large deflections |
en |
dc.subject.other |
Non-linear analysis |
en |
dc.subject.other |
Non-linear equations |
en |
dc.subject.other |
Numerical examples |
en |
dc.subject.other |
Poisson |
en |
dc.subject.other |
Shear center |
en |
dc.subject.other |
Shear deformation coefficients |
en |
dc.subject.other |
Shear loadings |
en |
dc.subject.other |
Shear modulus |
en |
dc.subject.other |
Stress functions |
en |
dc.subject.other |
Timoshenko beams |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Twisting moments |
en |
dc.subject.other |
Variable cross section |
en |
dc.subject.other |
Linear equations |
en |
dc.title |
Shear deformation effect in non-linear analysis of composite beams of variable cross section |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijnonlinmec.2008.03.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.03.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper the non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large deflections under general boundary conditions is presented employing the analog equation method (AEM), a BEM-based method. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of non-linear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy, the range of applications of the developed method and the influence of the shear deformation effect. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/j.ijnonlinmec.2008.03.005 |
en |
dc.identifier.isi |
ISI:000258350300010 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
660 |
en |
dc.identifier.epage |
682 |
en |