HEAL DSpace

Shear deformation effect in second-order analysis of frames subjected to variable axial loading

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Mokos, VG en
dc.date.accessioned 2014-03-01T01:29:07Z
dc.date.available 2014-03-01T01:29:07Z
dc.date.issued 2008 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19142
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Direct Stiffness Method en
dc.subject Nonlinear analysis en
dc.subject Second-order analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Nonlinear analysis en
dc.subject.other Shear deformation en
dc.subject.other Stiffness en
dc.subject.other Direct Stiffness Method en
dc.subject.other Shear deformation coefficients en
dc.subject.other Transverse shear stresses en
dc.subject.other Axial loads en
dc.title Shear deformation effect in second-order analysis of frames subjected to variable axial loading en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-007-0200-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-007-0200-z en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper a boundary element method is developed for the second-order analysis of frames consisting of beams of arbitrary simply or multiply connected constant cross section, taking into account shear deformation effect. Each beam is subjected to an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the beam deflection, the axial displacement and to a stress function and solved employing a BEM approach. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress function using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable. © 2007 Springer Verlag. en
heal.publisher SPRINGER en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-007-0200-z en
dc.identifier.isi ISI:000251381100008 en
dc.identifier.volume 41 en
dc.identifier.issue 3 en
dc.identifier.spage 429 en
dc.identifier.epage 439 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής