dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Mokos, VG |
en |
dc.date.accessioned |
2014-03-01T01:29:07Z |
|
dc.date.available |
2014-03-01T01:29:07Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19142 |
|
dc.subject |
Beam |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Direct Stiffness Method |
en |
dc.subject |
Nonlinear analysis |
en |
dc.subject |
Second-order analysis |
en |
dc.subject |
Shear center |
en |
dc.subject |
Shear deformation coefficients |
en |
dc.subject |
Transverse shear stresses |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Direct Stiffness Method |
en |
dc.subject.other |
Shear deformation coefficients |
en |
dc.subject.other |
Transverse shear stresses |
en |
dc.subject.other |
Axial loads |
en |
dc.title |
Shear deformation effect in second-order analysis of frames subjected to variable axial loading |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00466-007-0200-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-007-0200-z |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper a boundary element method is developed for the second-order analysis of frames consisting of beams of arbitrary simply or multiply connected constant cross section, taking into account shear deformation effect. Each beam is subjected to an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the beam deflection, the axial displacement and to a stress function and solved employing a BEM approach. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress function using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable. © 2007 Springer Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-007-0200-z |
en |
dc.identifier.isi |
ISI:000251381100008 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
429 |
en |
dc.identifier.epage |
439 |
en |