HEAL DSpace

Short-term predictability of traffic flow regimes in signalised arterials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.date.accessioned 2014-03-01T01:29:07Z
dc.date.available 2014-03-01T01:29:07Z
dc.date.issued 2008 en
dc.identifier.issn 1037-5783 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19145
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-49749118001&partnerID=40&md5=c5fa3cfeb034255a12aa20ea4afd0f81 en
dc.subject.other Administrative data processing en
dc.subject.other Artificial intelligence en
dc.subject.other Forecasting en
dc.subject.other Image classification en
dc.subject.other Intelligent systems en
dc.subject.other Intelligent vehicle highway systems en
dc.subject.other Management information systems en
dc.subject.other Network management en
dc.subject.other Statistical methods en
dc.subject.other Traffic control en
dc.subject.other Traffic surveys en
dc.subject.other Vegetation en
dc.subject.other Vehicle locating systems en
dc.subject.other Comparative studies en
dc.subject.other Critical flows en
dc.subject.other Flow regimes en
dc.subject.other Intelligent transportation systems en
dc.subject.other Modular neural network en
dc.subject.other Modular neural networks en
dc.subject.other Non-linear evolutions en
dc.subject.other Short-term traffic flow en
dc.subject.other Statistical characteristics en
dc.subject.other Statistical information en
dc.subject.other Traffic flow prediction en
dc.subject.other Traffic flowing en
dc.subject.other Neural networks en
dc.title Short-term predictability of traffic flow regimes in signalised arterials en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Modern intelligent transportation systems require the integration of accurate short-term traffic predictions for the purpose of enhanced network management. The present paper proposes a novel conceptual approach to traffic flow prediction based on the joint consideration of time-lagged volume and occupancy data, and information on the statistical characteristics of the short-term traffic flow evolution. For the purpose of prediction, a genetically optimised modular neural network architecture is developed. Findings indicate that the regimes in critical flow near capacity (where traffic flow exhibits unstable nonlinear evolution) are more difficult to predict when compared to the free-flow and jammed conditions. Moreover, the predictability of the critical-flow regimes decreases sharply in multiple-steps-ahead prediction, whereas the predictability of the regimes where traffic flow exhibits a more stable temporal behaviour is less affected by the expansion of the predictive horizon. Finally, a comparative study shows that the proposed modular neural network represents more accurately the anticipated traffic flow regimes when compared to the modular neural networks trained without the statistical information on the traffic flow evolution. en
heal.publisher ARRB GROUP LTD en
heal.journalName Road and Transport Research en
dc.identifier.isi ISI:000258628100002 en
dc.identifier.volume 17 en
dc.identifier.issue 2 en
dc.identifier.spage 19 en
dc.identifier.epage 33 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής