dc.contributor.author |
Chatzis, SP |
en |
dc.contributor.author |
Kosmopoulos, DI |
en |
dc.contributor.author |
Varvarigou, TA |
en |
dc.date.accessioned |
2014-03-01T01:29:07Z |
|
dc.date.available |
2014-03-01T01:29:07Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1053-587X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19146 |
|
dc.subject |
Bayesian inference |
en |
dc.subject |
Latent subspace modeling |
en |
dc.subject |
Pattern classification |
en |
dc.subject |
Robust clustering methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Bayesian networks |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Covariance matrix |
en |
dc.subject.other |
Normal distribution |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Bayesian inference |
en |
dc.subject.other |
Expectation-maximization algorithm |
en |
dc.subject.other |
Latent subspace modeling |
en |
dc.subject.other |
Classification (of information) |
en |
dc.title |
Signal modeling and classification using a robust latent space model based on t distributions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TSP.2007.907912 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TSP.2007.907912 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Factor analysis is a statistical covariance modeling technique based on the assumption of normally distributed data. A mixture of factor analyzers can be hence viewed as a special case of Gaussian (normal) mixture models providing a mathematically sound framework for attribute space dimensionality reduction. A significant shortcoming of mixtures of factor analyzers is the vulnerability of normal distributions to outliers. Recently, the replacement of normal distributions with the heavier-tailed Student's-t distributions has been proposed as a way to mitigate these shortcomings and the treatment of the resulting model under an expectation-maximization (EM) algorithm framework has been conducted. In this paper, we develop a Bayesian approach to factor analysis modeling based on Student's-t distributions. We derive a tractable variational inference algorithm for this model by expressing the Student's-t distributed factor analyzers as a marginalization over additional latent variables. Our innovative approach provides an efficient and more robust alternative to EM-based methods, resolving their singularity and overfitting proneness problems, while allowing for the automatic determination of the optimal model size. We demonstrate the superiority of the proposed model over well-known covariance modeling techniques in a wide range of signal processing applications. © 2008 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Signal Processing |
en |
dc.identifier.doi |
10.1109/TSP.2007.907912 |
en |
dc.identifier.isi |
ISI:000253358400007 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
949 |
en |
dc.identifier.epage |
963 |
en |