HEAL DSpace

Signal modeling and classification using a robust latent space model based on t distributions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, SP en
dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T01:29:07Z
dc.date.available 2014-03-01T01:29:07Z
dc.date.issued 2008 en
dc.identifier.issn 1053-587X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19146
dc.subject Bayesian inference en
dc.subject Latent subspace modeling en
dc.subject Pattern classification en
dc.subject Robust clustering methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Bayesian networks en
dc.subject.other Cluster analysis en
dc.subject.other Covariance matrix en
dc.subject.other Normal distribution en
dc.subject.other Statistical methods en
dc.subject.other Variational techniques en
dc.subject.other Bayesian inference en
dc.subject.other Expectation-maximization algorithm en
dc.subject.other Latent subspace modeling en
dc.subject.other Classification (of information) en
dc.title Signal modeling and classification using a robust latent space model based on t distributions en
heal.type journalArticle en
heal.identifier.primary 10.1109/TSP.2007.907912 en
heal.identifier.secondary http://dx.doi.org/10.1109/TSP.2007.907912 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Factor analysis is a statistical covariance modeling technique based on the assumption of normally distributed data. A mixture of factor analyzers can be hence viewed as a special case of Gaussian (normal) mixture models providing a mathematically sound framework for attribute space dimensionality reduction. A significant shortcoming of mixtures of factor analyzers is the vulnerability of normal distributions to outliers. Recently, the replacement of normal distributions with the heavier-tailed Student's-t distributions has been proposed as a way to mitigate these shortcomings and the treatment of the resulting model under an expectation-maximization (EM) algorithm framework has been conducted. In this paper, we develop a Bayesian approach to factor analysis modeling based on Student's-t distributions. We derive a tractable variational inference algorithm for this model by expressing the Student's-t distributed factor analyzers as a marginalization over additional latent variables. Our innovative approach provides an efficient and more robust alternative to EM-based methods, resolving their singularity and overfitting proneness problems, while allowing for the automatic determination of the optimal model size. We demonstrate the superiority of the proposed model over well-known covariance modeling techniques in a wide range of signal processing applications. © 2008 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Signal Processing en
dc.identifier.doi 10.1109/TSP.2007.907912 en
dc.identifier.isi ISI:000253358400007 en
dc.identifier.volume 56 en
dc.identifier.issue 3 en
dc.identifier.spage 949 en
dc.identifier.epage 963 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής