dc.contributor.author |
Markolefas, SI |
en |
dc.contributor.author |
Tsouvalas, DA |
en |
dc.contributor.author |
Tsamasphyros, GI |
en |
dc.date.accessioned |
2014-03-01T01:29:13Z |
|
dc.date.available |
2014-03-01T01:29:13Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19159 |
|
dc.subject |
Dipolar gradient elasticity |
en |
dc.subject |
Mixed finite elements |
en |
dc.subject |
Mixed formulations |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Stress measurement |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Dipolar gradient elasticity |
en |
dc.subject.other |
Mixed finite elements |
en |
dc.subject.other |
Mixed formulations |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Some C0-continuous mixed formulations for general dipolar linear gradient elasticity boundary value problems and the associated energy theorems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2008.01.021 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2008.01.021 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The goal of this work is a systematic presentation of some classes of mixed weak formulations, for general multi-dimensional dipolar gradient elasticity (fourth order) boundary value problems. The displacement field main variable is accompanied by the double stress tensor and the Cauchy stress tensor (case 1 or mu - tau - u formulation), the double stress tensor alone (case 2 or mu - u formulation), the double stress, the Cauchy stress, the displacement second gradient and the standard strain field (case 3 or mu - tau - kappa - epsilon - u formulation) and the displacement first gradient, along with the equilibrium stress (case 4 or u - theta - gamma formulation). In all formulations, the respective essential conditions are built in the structure of the solution spaces. For cases 1, 2 and 4, one-dimensional analogues are presented for the purpose of numerical comparison. Moreover, the standard Galerkin formulation is depicted. It is noted that the standard Galerkin weak form demands C-1-continuous conforming basis functions. On the other hand, up to first order derivatives appear in the bilinear forms of the current mixed formulations. Hence, standard C-0-continuous conforming basis functions may be employed in the finite element approximations. The main purpose of this work is to provide a reference base for future numerical applications of this type of mixed methods. In all cases, the associated quadratic energy functionals are formed for the purpose of completeness. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2008.01.021 |
en |
dc.identifier.isi |
ISI:000255811200008 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
3255 |
en |
dc.identifier.epage |
3281 |
en |