HEAL DSpace

Some C0-continuous mixed formulations for general dipolar linear gradient elasticity boundary value problems and the associated energy theorems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markolefas, SI en
dc.contributor.author Tsouvalas, DA en
dc.contributor.author Tsamasphyros, GI en
dc.date.accessioned 2014-03-01T01:29:13Z
dc.date.available 2014-03-01T01:29:13Z
dc.date.issued 2008 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19159
dc.subject Dipolar gradient elasticity en
dc.subject Mixed finite elements en
dc.subject Mixed formulations en
dc.subject.classification Mechanics en
dc.subject.other Elasticity en
dc.subject.other Stress measurement en
dc.subject.other Tensors en
dc.subject.other Theorem proving en
dc.subject.other Dipolar gradient elasticity en
dc.subject.other Mixed finite elements en
dc.subject.other Mixed formulations en
dc.subject.other Boundary value problems en
dc.title Some C0-continuous mixed formulations for general dipolar linear gradient elasticity boundary value problems and the associated energy theorems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2008.01.021 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2008.01.021 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The goal of this work is a systematic presentation of some classes of mixed weak formulations, for general multi-dimensional dipolar gradient elasticity (fourth order) boundary value problems. The displacement field main variable is accompanied by the double stress tensor and the Cauchy stress tensor (case 1 or mu - tau - u formulation), the double stress tensor alone (case 2 or mu - u formulation), the double stress, the Cauchy stress, the displacement second gradient and the standard strain field (case 3 or mu - tau - kappa - epsilon - u formulation) and the displacement first gradient, along with the equilibrium stress (case 4 or u - theta - gamma formulation). In all formulations, the respective essential conditions are built in the structure of the solution spaces. For cases 1, 2 and 4, one-dimensional analogues are presented for the purpose of numerical comparison. Moreover, the standard Galerkin formulation is depicted. It is noted that the standard Galerkin weak form demands C-1-continuous conforming basis functions. On the other hand, up to first order derivatives appear in the bilinear forms of the current mixed formulations. Hence, standard C-0-continuous conforming basis functions may be employed in the finite element approximations. The main purpose of this work is to provide a reference base for future numerical applications of this type of mixed methods. In all cases, the associated quadratic energy functionals are formed for the purpose of completeness. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2008.01.021 en
dc.identifier.isi ISI:000255811200008 en
dc.identifier.volume 45 en
dc.identifier.issue 11-12 en
dc.identifier.spage 3255 en
dc.identifier.epage 3281 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής