HEAL DSpace

Standard Galerkin formulation with high order Lagrange finite elements for option markets pricing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markolefas, S en
dc.date.accessioned 2014-03-01T01:29:13Z
dc.date.available 2014-03-01T01:29:13Z
dc.date.issued 2008 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19169
dc.subject Black-Scholes equation en
dc.subject Call options en
dc.subject High order finite elements en
dc.subject Option contracts pricing models en
dc.subject Put options en
dc.subject.classification Mathematics, Applied en
dc.subject.other Discrete time control systems en
dc.subject.other Finite element method en
dc.subject.other Interpolation en
dc.subject.other Lagrange multipliers en
dc.subject.other Mathematical models en
dc.subject.other Partial differential equations en
dc.subject.other Polynomial approximation en
dc.subject.other Stochastic control systems en
dc.subject.other Black-Scholes equation en
dc.subject.other Crank-Nicolson methods en
dc.subject.other Galerkin formulations en
dc.subject.other Option contracts pricing models en
dc.subject.other Galerkin methods en
dc.title Standard Galerkin formulation with high order Lagrange finite elements for option markets pricing en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2007.05.017 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2007.05.017 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A semi-discrete Galerkin formulation (combined with high order Lagrangian finite elements) is employed for the approximate solution of the parabolic partial differential equation (widely known as Black-Scholes equation), which governs the evolution of the non-arbitrage (equilibrium) value of an option contract written on a singe underlying security. The Crank-Nicolson method is employed for the discretization in the time domain. Extensive numerical experimentation with American call and put stock options (where the stock may pay discrete cash dividends) and comparison with existing analytical, as well as, with approximate solutions, confirms the efficiency and accuracy of the proposed formulation. Moreover, it is verified that the p-extension (increasing the order of the polynomial interpolants, on a relatively coarse finite element mesh) is much more efficient (in terms of both accuracy and CPU time) than the h-extension (reducing the element sizes, with fixed low polynomial order). The work may be extended to more complicated option pricing models (e.g., multiasset options or options on assets with stochastic volatilities). (c) 2007 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2007.05.017 en
dc.identifier.isi ISI:000253173800035 en
dc.identifier.volume 195 en
dc.identifier.issue 2 en
dc.identifier.spage 707 en
dc.identifier.epage 720 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής