dc.contributor.author |
Tsenoglou, C |
en |
dc.contributor.author |
Voyiatzis, E |
en |
dc.date.accessioned |
2014-03-01T01:29:14Z |
|
dc.date.available |
2014-03-01T01:29:14Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0377-0257 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19172 |
|
dc.subject |
Constitutive instability |
en |
dc.subject |
Non-linear viscoelasticity |
en |
dc.subject |
Poiseuille flow |
en |
dc.subject |
Shear banding |
en |
dc.subject |
Shear thinning |
en |
dc.subject |
Spurt |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Constitutive equations |
en |
dc.subject.other |
Flow velocity |
en |
dc.subject.other |
Non Newtonian flow |
en |
dc.subject.other |
Pipe flow |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Rheology |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Viscoelasticity |
en |
dc.subject.other |
Poiseuille flow |
en |
dc.subject.other |
Pressure driven flow |
en |
dc.subject.other |
Shear thinning |
en |
dc.subject.other |
Shear bands |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Constitutive equations |
en |
dc.subject.other |
Flow velocity |
en |
dc.subject.other |
Non Newtonian flow |
en |
dc.subject.other |
Pipe flow |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Rheology |
en |
dc.subject.other |
Shear bands |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Viscoelasticity |
en |
dc.title |
Steady shear banding in complex fluids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jnnfm.2007.09.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jnnfm.2007.09.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Shear banding (SB) is manifested by the abrupt ""demixing"" of the flow into regions of high and low shear rate. In this paper, we first relate analytically the rheological parameters of the fluid with the range of shear rates and stresses of SB occurrence. For this, we accept that the origin of shear banding is constitutive, and adopt a non-linear viscoelastic expression able to accommodate the double-valuedness of the stress with flow intensity, under certain conditions. We then implement the model for the case of pressure driven flow through a cylindrical pipe; we derive approximate expressions for the velocity profile in the two-banded regions (core and outer annular), the overall throughput in the presence or absence of ""spurt"", and the radial location limits of the shear rate discontinuity. © 2007 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Non-Newtonian Fluid Mechanics |
en |
dc.identifier.doi |
10.1016/j.jnnfm.2007.09.002 |
en |
dc.identifier.isi |
ISI:000256605100010 |
en |
dc.identifier.volume |
151 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
119 |
en |
dc.identifier.epage |
128 |
en |