dc.contributor.author |
Sargentis, Ch |
en |
dc.contributor.author |
Giannakopoulos, K |
en |
dc.contributor.author |
Travlos, A |
en |
dc.contributor.author |
Normand, P |
en |
dc.contributor.author |
Tsamakis, D |
en |
dc.date.accessioned |
2014-03-01T01:29:15Z |
|
dc.date.available |
2014-03-01T01:29:15Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0749-6036 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19182 |
|
dc.subject |
Memory devices |
en |
dc.subject |
Metallic |
en |
dc.subject |
Nanocrystals |
en |
dc.subject |
Nanoparticles |
en |
dc.subject |
Retention time |
en |
dc.subject.classification |
Physics, Condensed Matter |
en |
dc.subject.other |
Data storage equipment |
en |
dc.subject.other |
Electric properties |
en |
dc.subject.other |
Hafnium |
en |
dc.subject.other |
Hafnium compounds |
en |
dc.subject.other |
Microscopic examination |
en |
dc.subject.other |
Nanoparticles |
en |
dc.subject.other |
Nanostructures |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Memory devices |
en |
dc.subject.other |
Metallic |
en |
dc.subject.other |
Nanocrystals |
en |
dc.subject.other |
Retention time |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.title |
Study of charge storage characteristics of memory devices embedded with metallic nanoparticles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.spmi.2008.03.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.spmi.2008.03.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The structural and electrical properties of thin silicon dioxide and hafnium oxide dielectric stacks with embedded gold nanoparticles obtained by electron-beam evaporation are reported. Transmission electron microscopy shows that the nanoparticles have a mean diameter of 2.6 nm and a sheet density of 3.3 x 10(12) cm(-2). High-frequency and quasi-static capacitance-voltage measurements of MOS capacitors reveal that charge injection and storage takes place in the nanoparticle dielectric stack at low gate voltages. Efficient charge trapping occurs only in the case of holes injected from the substrate. Programming and retention time measurements indicate that the fabricated nanoparticle dielectrics are attractive for low-voltage non-volatile memory applications. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Superlattices and Microstructures |
en |
dc.identifier.doi |
10.1016/j.spmi.2008.03.003 |
en |
dc.identifier.isi |
ISI:000261200000026 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
4-5 |
en |
dc.identifier.spage |
483 |
en |
dc.identifier.epage |
488 |
en |